No Arabic abstract
The elementary structures of turbulence, i.e., vortex tubes, are studied using velocity data obtained in laboratory experiments for boundary layers and duct flows at microscale Reynolds numbers 332-1934. While past experimental studies focused on intense vortex tubes, the present study focuses on all vortex tubes with various intensities. We obtain the mean velocity profile. The radius scales with the Kolmogorov length. The circulation velocity scales with the Kolmogorov velocity, in contrast to the case of intense vortex tubes alone where the circulation velocity scales with the rms velocity fluctuation. Since these scaling laws are independent of the configuration for turbulence production, they appear to be universal at high Reynolds numbers.
An essential ingredient of turbulent flows is the vortex stretching mechanism, which emanates from the non-linear interaction of vorticity and strain-rate tensor and leads to formation of extreme events. We analyze the statistical correlations between vorticity and strain rate by using a massive database generated from very well resolved direct numerical simulations of forced isotropic turbulence in periodic domains. The grid resolution is up to $12288^3$, and the Taylor-scale Reynolds number is in the range $140-1300$. In order to understand the formation and structure of extreme vorticity fluctuations, we obtain statistics conditioned on enstrophy (vorticity-squared). The magnitude of strain, as well as its eigenvalues, is approximately constant when conditioned on weak enstrophy; whereas they grow approximately as power laws for strong enstrophy, which become steeper with increasing $R_lambda$. We find that the well-known preferential alignment between vorticity and the intermediate eigenvector of strain tensor is even stronger for large enstrophy, whereas vorticity shows a tendency to be weakly orthogonal to the most extensive eigenvector (for large enstrophy). Yet the dominant contribution to the production of large enstrophy events arises from the most extensive eigendirection, the more so as $R_lambda$ increases. Nevertheless, the stretching in intense vorticity regions is significantly depleted, consistent with the kinematic properties of weakly-curved tubes in which they are organized. Further analysis reveals that intense enstrophy is primarily depleted via viscous diffusion, though viscous dissipation is also significant. Implications for modeling are nominally addressed as appropriate.
This paper proposes a new data assimilation method for recovering high fidelity turbulent flow field around airfoil at high Reynolds numbers based on experimental data, which is called Proper Orthogonal Decomposition Inversion (POD-Inversion) data assimilation method. Aiming at the flows including shock wave discontinuities or separated flows at high angle of attack, the proposed method can reconstruct high-fidelity turbulent flow field combining with experimental distributed force coefficients. We firstly perform the POD analysis to the turbulent eddy viscosity fields computed by SA model and obtain the base POD modes. Then optimized the POD coefficients by global optimization algorithm coupling with the Navier-Stokes equations solver. The high-fidelity turbulent flied are recovered by several main modes, which can dramatically reduce the dimensions of the system. The effectiveness of the method is verified by the cases of transonic flow around the RAE2822 airfoil at high Reynolds numbers and the separated flow at high angles of attack. The results demonstrate that the proposed assimilation method can recover the turbulent flow field which optimally match the experimental data, and significantly reduce the error of pressure coefficients. The proposed data assimilation method can offer high-fidelity field data for turbulent model based on machine learning.
In this video, we present the dynamics of an array of falling particles at intermediate Reynolds numbers. The film shows the vorticity plots of 3, 4, 7, 16 falling particles at $Re = 200$. We highlight the effect of parity on the falling configuration of the array. In steady state, an initially uniformly spaced array forms a convex shape when $n=3$, i.e the middle particle leads, but forms a concave shape when $n = 4$. For larger odd numbers of particles, the final state consists of a mixture of concave and convex shapes. For larger even numbers of particles, the steady state remains a concave shape. Below a threshold of initial particle spacing, particles cluster in groups of 2 to 3.
We experimentally investigate the effect of geometrical anisotropy for buoyant ellipsoidal particles rising in a still fluid. All other parameters, such as the Galileo number $Ga approx 6000$ and the particle density ratio $Gamma approx 0.53$ are kept constant. The geometrical aspect ratio, $chi$, of the particle is varied systematically from $chi$ = 0.2 (oblate) to 5 (prolate). Based on tracking all degrees of particle motion, we identify six regimes characterised by distinct rise dynamics. Firstly, for $0.83 le chi le 1.20$, increased rotational dynamics are observed and the particle flips over semi-regularly in a tumbling-like motion. Secondly, for oblate particles with $0.29 le chi le 0.75$, planar regular zig-zag motion is observed, where the drag coefficient is independent of $chi$. Thirdly, for the most extreme oblate geometries ($chi le 0.25$) a flutter-like behaviour is found, characterised by precession of the oscillation plane and an increase in the drag coefficient. For prolate geometries, we observed two coexisting oscillation modes that contribute to complex trajectories: the first is related to oscillations of the pointing vector and the second corresponds to a motion perpendicular to the particles symmetry axis. We identify a longitudinal regime ($1.33 le chi le 2.5$), where both modes are active and a different one, the broadside-regime ($3 le chile 4$), where only the second mode is present. Remarkably, for the most prolate particles ($chi = 5$), we observe an entirely different helical rise with completely unique features.
Bio-inspired oscillatory foil propulsion has the ability to traverse various propulsive modes by dynamically changing the foils heave and pitch kinematics. This research characterizes the propulsion properties and wake dynamics of a symmetric oscillating foil, specifically targeting the high Reynolds number operation of small to medium surface vessels whose propulsive specifications have a broad range of loads and speeds. An unsteady Reynolds-averaged Navier-Stokes (URANS) solver with a k-$omega$ SST turbulence model is used to sweep through pitch amplitude and frequency at two heave amplitudes of $h_0/c=1$ and $h_0/c=2$ at $Re=10^6$. At $h_0/c=2$, the maximum thrust coefficient is $C_T=8.2$ due to the large intercepted flow area of the foil, whereas at a decreased Strouhal number the thrust coefficient decreases and the maximum propulsive efficiency reaches 75%. Results illustrate the kinematics required to transition between the high-efficiency and high-thrust regimes at high Reynolds number and the resulting changes to the vortex wake structure. The unsteady vortex dynamics throughout the heave-pitch cycle strongly influence the characterization of thrust and propulsive efficiency, and are classified into flow regimes based on performance and vortex structure.