Do you want to publish a course? Click here

WASP-5b: a dense, very-hot Jupiter transiting a 12th-mag Southern-hemisphere star

318   0   0.0 ( 0 )
 Added by David Anderson
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery of WASP-5b, a Jupiter-mass planet orbiting a 12th-mag G-type star in the Southern hemisphere. The 1.6-d orbital period places WASP-5b in the class of very-hot Jupiters and leads to a predicted equilibrium temperature of 1750 K. WASP-5b is the densest of any known Jovian-mass planet, being a factor seven denser than TrES-4, which is subject to similar stellar insolation, and a factor three denser than WASP-4b, which has a similar orbital period. We present transit photometry and radial-velocity measurements of WASP-5 (= USNO-B1 0487-0799749), from which we derive the mass, radius and density of the planet: M_P = 1.58 +0.13 -0.08 M_J, R_P = 1.090 +0.094 -0.058 R_J and Rho_P = 1.22 +0.19 -0.24 Rho_J. The orbital period is P = 1.6284296 +0.0000048 -0.0000037 d and the mid-transit epoch is T_C (HJD) = 2454375.62466 +0.00026 -0.00025.



rate research

Read More

We report the discovery of WASP-4b, a large transiting gas-giant planet with an orbital period of 1.34 days. This is the first planet to be discovered by the SuperWASP-South observatory and CORALIE collaboration and the first planet orbiting a star brighter than 16th magnitude to be discovered in the Southern hemisphere. A simultaneous fit to high-quality lightcurves and precision radial-velocity measurements leads to a planetary mass of 1.22 +/- 0.1 MJup and a planetary radius of 1.42 +/- 0.08 RJup. The host star is USNO-B1.0 0479-0948995, a G7V star of visual magnitude 12.5. As a result of the short orbital period, the predicted surface temperature of the planet is 1776 K, making it an ideal candidate for detections of the secondary eclipse at infrared wavelengths.
216 - G. A. Bakos 2007
We report the discovery of a planet transiting a moderately bright (V = 12.00) G star, with an orbital period of 2.788491 +/-0.000025 days. From the transit light curve we determine that the radius of the planet is Rp = 1.257 +/- 0.053 RJup. HAT-P-5b has a mass of Mp = 1.06 +/- 0.11 MJup, similar to the average mass of previously-known transiting exoplanets, and a density of rho = 0.66 +/- 0.11 g cm^-3 . We find that the center of transit is Tc = 2,454,241.77663 +/- 0.00022 (HJD), and the total transit duration is 0.1217 +/- 0.0012 days.
336 - M. Gillon , A. P. Doyle , M. Lendl 2011
We report the discovery by the WASP transit survey of a giant planet in a close orbit (0.0295+-0.0009 AU) around a moderately bright (V=11.6, K=10) G9 dwarf (0.89+-0.08 M_sun, 0.84+-0.03 R_sun) in the Southern constellation Eridanus. Thanks to high-precision follow-up photometry and spectroscopy obtained by the telescopes TRAPPIST and Euler, the mass and size of this planet, WASP-50b, are well constrained to 1.47+-0.09 M_jup and 1.15+-0.05 R_jup, respectively. The transit ephemeris is 2455558.6120 (+-0.0002) + N x 1.955096 (+-0.000005) HJD_UTC. The size of the planet is consistent with basic models of irradiated giant planets. The chromospheric activity (log R_HK = -4.67) and rotational period (P_rot = 16.3+-0.5 days) of the host star suggest an age of 0.8+-0.4 Gy that is discrepant with a stellar-evolution estimate based on the measured stellar parameters (rho_star = 1.48+-0.10 rho_sun, Teff = 5400+-100 K, [Fe/H]= -0.12+-0.08) which favours an age of 7+-3.5 Gy. This discrepancy could be explained by the tidal and magnetic influence of the planet on the star, in good agreement with the observations that stars hosting hot Jupiters tend to show faster rotation and magnetic activity (Pont 2009; Hartman 2010). We measure a stellar inclination of 84 (-31,+6) deg, disfavouring a high stellar obliquity. Thanks to its large irradiation and the relatively small size of its host star, WASP-50b is a good target for occultation spectrophotometry, making it able to constrain the relationship between hot Jupiters atmospheric thermal profiles and the chromospheric activity of their host stars proposed by Knutson et al. (2010).
213 - P. F. L. Maxted 2010
We report the discovery of a transiting planet with an orbital period of 3.05d orbiting the star TYC 7247-587-1. The star, WASP-41, is a moderately bright G8V star (V=11.6) with a metallicity close to solar ([Fe/H]=-0.08+-0.09). The star shows evidence of moderate chromospheric activity, both from emission in the cores of the CaII H and K lines and photometric variability with a period of 18.4d and an amplitude of about 1%. We use a new method to show quantitatively that this periodic signal has a low false alarm probability. The rotation period of the star implies a gyrochronological age for WASP-41 of 1.8Gyr with an error of about 15%. We have used a combined analysis of the available photometric and spectroscopic data to derive the mass and radius of the planet (0.92+-0.06M_Jup, 1.20+-0.06R_Jup). Further observations of WASP-41 can be used to explore the connections between the properties of hot Jupiter planets and thelevel of chromospheric activity in their host stars.
We report the discovery of WASP-190b, an exoplanet on a 5.37-day orbit around a mildly-evolved F6 IV-V star with V = 11.7, T_eff = 6400 $pm$ 100 K, M$_{*}$ = 1.35 $pm$ 0.05 M_sun and R$_{*}$ = 1.6 $pm$ 0.1 R_sun. The planet has a radius of R_p = 1.15 $pm$ 0.09 R_Jup and a mass of M_p = 1.0 $pm$ 0.1 M_Jup, making it a mildly inflated hot Jupiter. It is the first hot Jupiter confirmed via Doppler tomography with an orbital period >5 days. The orbit is also marginally misaligned with respect to the stellar rotation, with $lambda$ = 21 $pm$ 6$^{circ}$ measured using Doppler tomography.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا