Do you want to publish a course? Click here

The Master Space of N=1 Gauge Theories

320   0   0.0 ( 0 )
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

The full moduli space M of a class of N=1 supersymmetric gauge theories is studied. For gauge theories living on a stack of D3-branes at Calabi-Yau singularities X, M is a combination of the mesonic and baryonic branches, the former being the symmetric product of X. In consonance with the mathematical literature, the single brane moduli space is called the master space F. Illustrating with a host of explicit examples, we exhibit many algebro-geometric properties of the master space such as when F is toric Calabi-Yau, behaviour of its Hilbert series, its irreducible components and its symmetries. In conjunction with the plethystic programme, we investigate the counting of BPS gauge invariants, baryonic and mesonic, using the geometry of F and show how its refined Hilbert series not only engenders the generating functions for the counting but also beautifully encode ``hidden global symmetries of the gauge theory which manifest themselves as symmetries of the complete moduli space M for arbitrary number of branes.



rate research

Read More

We classify 5d N=1 gauge theories carrying a simple gauge group that can arise by mass-deforming 5d SCFTs and 6d SCFTs (compactified on a circle, possibly with a twist). For theories having a 6d UV completion, we determine the tensor branch data of the 6d SCFT and capture the twist in terms of the tensor branch data. We also determine the dualities between these 5d gauge theories, thus determining the sets of gauge theories having a common UV completion.
We discuss fractional D3-branes on the orbifold C^3/Z_2*Z_2. We study the open and the closed string spectrum on this orbifold. The corresponding N=1 theory on the brane has, generically, a U(N_1)*U(N_2)*U(N_3)*U(N_4) gauge group with matter in the bifundamental. In particular, when only one type of brane is present, one obtains pure N=1 Yang-Mills. We study the coupling of the branes to the bulk fields and present the corresponding supergravity solution, valid at large distances. By using a probe analysis, we are able to obtain the Wilsonian beta-function for those gauge theories that possess some chiral multiplet. Although, due to the lack of moduli, the probe technique is not directly applicable to the case of pure N=1 Yang-Mills, we point out that the same formula gives the correct result also for this case.
Reflexive polygons have been extensively studied in a variety of contexts in mathematics and physics. We generalize this programme by looking at the 45 different lattice polygons with two interior points up to SL(2,$mathbb{Z}$) equivalence. Each corresponds to some affine toric 3-fold as a cone over a Sasaki-Einstein 5-fold. We study the quiver gauge theories of D3-branes probing these cones, which coincide with the mesonic moduli space. The minimum of the volume function of the Sasaki-Einstein base manifold plays an important role in computing the R-charges. We analyze these minimized volumes with respect to the topological quantities of the compact surfaces constructed from the polygons. Unlike reflexive polytopes, one can have two fans from the two interior points, and hence give rise to two smooth varieties after complete resolutions, leading to an interesting pair of closely related geometries and gauge theories.
We show that a proposed duality [arXiv:0711.0054] between infinitely coupled gauge theories and superconformal field theories (SCFTs) with weakly gauged flavor groups predicts the existence of new rank 1 SCFTs. These superconformal fixed point theories have the same Coulomb branch singularities as the rank 1 E_6, E_7, and E_8 SCFTs, but have smaller flavor symmetry algebras and different central charges. Gauging various subalgebras of the flavor algebras of these rank 1 SCFTs provides many examples of infinite-coupling dualities, satisfying an intricate set of consistency checks. They also provide examples of N=2 conformal theories with marginal couplings but no weak-coupling limits.
122 - O.F.Dayi , L.T. Kelleyane 2006
A formulation of (non-anticommutative) N=1/2 supersymmetric U(N) gauge theory in noncommutative space is studied. We show that at one loop UV/IR mixing occurs. A generalization of Seiberg-Witten map to noncommutative and non-anticommutative superspace is employed to obtain an action in terms of commuting fields at first order in the noncommutativity parameter tetha. This leads to abelian and non-abelian gauge theories whose supersymmetry transformations are local and non-local, respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا