Do you want to publish a course? Click here

3D spectroscopy of the ionized gas kinematics in galactic rings

94   0   0.0 ( 0 )
 Added by Alexei Moiseev
 Publication date 2008
  fields Physics
and research's language is English
 Authors A. V. Moiseev




Ask ChatGPT about the research

The kinematics of galactic rings were studied with a scanning Fabry-Perot interferometer mounted in the multi-mode focal reducer SCORPIO (Afanasiev & Moiseev 2005) at the SAO RAS 6-m telescope. The analysis of the ionized gas velocity fields allows us to understand the nature of the ring formation in several galaxies. The different types of the rings in the presented objects (resonanced, collisional, polar) were caused by the various sorts of interactions: merging, head-on collisions.



rate research

Read More

We present results for 19 Lyman Break Analogs (LBAs) observed with Keck/OSIRIS with an AO-assisted spatial resolution of less than 200 pc. We detect satellites/companions, diffuse emission and velocity shear, all with high signal-to-noise ratios. These galaxies present remarkably high velocity dispersion along the line of sight(- 70 km s-1), much higher than standard star-forming spirals in the low-redshift universe. We artificially redshift our data to z - 2.2 to allow for a direct comparison with observations of high-z LBGs and find striking similarities between both samples. This suggests that either similar physical processes are responsible for their observed properties, or, alternatively, that it is very difficult to distinguish between different mechanisms operating in the low versus high redshift starburst galaxies based on the available data. The comparison between morphologies in the UV/optical continuum and our kinemetry analysis often shows that neither is by itself sufficient to confirm or completely rule out the contribution from recent merger events. We find a correlation between the kinematic properties and stellar mass, in that more massive galaxies show stronger evidence for a disk-like structure. This suggests a co-evolutionary process between the stellar mass build-up and the formation of morphological and dynamical sub-structure within the galaxy.
We investigate the kinematics of neutral gas in the Small Magellanic Cloud (SMC) and test the hypothesis that it is rotating in a disk. To trace the 3D motions of the neutral gas distribution, we identify a sample of young, massive stars embedded within it. These are stars with radial velocity measurements from spectroscopic surveys and proper motion measurements from Gaia, whose radial velocities match with dominant HI components. We compare the observed radial and tangential velocities of these stars with predictions from the state-of-the-art rotating disk model based on high-resolution 21 cm observations of the SMC from the Australian Square Kilometer Array Pathfinder telescope. We find that the observed kinematics of gas-tracing stars are inconsistent with disk rotation. We conclude that the kinematics of gas in the SMC are more complex than can be inferred from the integrated radial velocity field. As a result of violent tidal interactions with the LMC, non-rotational motions are prevalent throughout the SMC, and it is likely composed of distinct sub-structures overlapping along the line of sight.
We address the spatial scale, ionization structure, mass and metal content of gas at the Milky Way disk-halo interface detected as absorption in the foreground of seven closely-spaced, high-latitude halo blue horizontal branch stars (BHBs) with heights z = 3 - 14 kpc. We detect transitions that trace multiple ionization states (e.g. CaII, FeII, SiIV, CIV) with column densities that remain constant with height from the disk, indicating that the gas most likely lies within z < 3.4 kpc. The intermediate ionization state gas traced by CIV and SiIV is strongly correlated over the full range of transverse separations probed by our sightlines, indicating large, coherent structures greater than 1 kpc in size. The low ionization state material traced by CaII and FeII does not exhibit a correlation with either N$_{rm HI}$ or transverse separation, implying cloudlets or clumpiness on scales less than 10 pc. We find that the observed ratio log(N_SiIV/ N_CIV), with a median value of -0.69+/-0.04, is sensitive to the total carbon content of the ionized gas under the assumption of either photoionization or collisional ionization. The only self-consistent solution for photoionized gas requires that Si be depleted onto dust by 0.35 dex relative to the solar Si/C ratio, similar to the level of Si depletion in DLAs and in the Milky Way ISM. The allowed range of values for the areal mass infall rate of warm, ionized gas at the disk-halo interface is 0.0003 < dM_gas / dtdA [M_sun kpc^-2 yr^-] < 0.006. Our data support a physical scenario in which the Milky Way is fed by complex, multiphase processes at its disk-halo interface that involve kpc-scale ionized envelopes or streams containing pc-scale, cool clumps.
317 - G. H. Heald 2005
We present WIYN SparsePak observations of the diffuse ionized gas (DIG) halo of NGC 891. Preliminary results of an analysis of the halo velocity field reveal a clear gradient of the azimuthal velocity with z which agrees with results for the neutral gas. The magnitude of the gradient has been determined, using two independent methods, to be approximately 15 km/s/kpc.
142 - A.V. Moiseev SAO 2010
The study of ionized gas morphology and kinematics in nine eXtremely Metal-Deficient (XMD) galaxies with the scanning Fabry-Perot interferometer on the SAO 6-m telescope is presented. Some of these very rare objects (with currently known range of O/H of 7.12 < 12+log(O/H) < 7.65, or Zo/35 < Z < Zo/10) are believed to be the best proxies of `young low-mass galaxies in the high-redshift Universe. One of the main goals of this study is to look for possible evidence of star formation (SF) activity induced by external perturbations. Recent results from HI mapping of a small subsample of XMD star-forming galaxies provided confident evidence for the important role of interaction-induced SF. Our observations provide complementary or new information that the great majority of the studied XMD dwarfs have strongly disturbed gas morphology and kinematics or the presence of detached components. We approximate the observed velocity fields by simple models of a rotating tilted thin disc, which allow us the robust detection of non-circular gas motions. These data, in turn, indicate the important role of current/recent interactions and mergers in the observed enhanced star formation. As a by-product of our observations, we obtained data for two LSB dwarf galaxies: Anon J012544+075957 that is a companion of the merger system UGC 993, and SAO 0822+3545 which shows off-centre, asymmetric, low SFR star-forming regions, likely induced by the interaction with the companion XMD dwarf HS 0822+3542.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا