No Arabic abstract
We calculate one-loop scattering amplitudes in N=4 super Yang-Mills theory away from the origin of the moduli space and demonstrate that the results are extremely simple, in much the same way as in the conformally invariant theory. Specifically, we consider the model where an SU(2) gauge group is spontaneously broken down to U(1). The complete component Lagrange density of the model is given in a form useful for perturbative calculations. We argue that the scattering amplitudes with massive external states deserve further study. Finally, our work shows that loop corrections can be readily computed in a mass-regulated N=4 theory, which may be relevant in trying to connect weak-coupling results with those at strong coupling, as discussed recently by Alday and Maldacena.
We argue that the scattering amplitudes in the maximally supersymmetric N=4 super-Yang-Mills theory possess a new symmetry which extends the previously discovered dual conformal symmetry. To reveal this property we formulate the scattering amplitudes as functions in the appropriate dual superspace. Rewritten in this form, all tree-level MHV and next-to-MHV amplitudes exhibit manifest dual superconformal symmetry. We propose a new, compact and Lorentz covariant formula for the tree-level NMHV amplitudes for arbitrary numbers and types of external particles. The dual conformal symmetry is broken at loop level by infrared divergences. However, we provide evidence that the anomalous contribution to the MHV and NMHV superamplitudes is the same and, therefore, their ratio is a dual conformal invariant function. We identify this function by an explicit calculation of the six-particle amplitudes at one loop. We conjecture that these properties hold for all, MHV and non-MHV, superamplitudes in N=4 SYM both at weak and at strong coupling.
We study event shapes in N=4 SYM describing the angular distribution of energy and R-charge in the final states created by the simplest half-BPS scalar operator. Applying the approach developed in the companion paper arXiv:1309.0769, we compute these observables using the correlation functions of certain components of the N=4 stress-tensor supermultiplet: the half-BPS operator itself, the R-symmetry current and the stress tensor. We present master formulas for the all-order event shapes as convolutions of the Mellin amplitude defining the correlation function of the half-BPS operators, with a coupling-independent kernel determined by the choice of the observable. We find remarkably simple relations between various event shapes following from N=4 superconformal symmetry. We perform thorough checks at leading order in the weak coupling expansion and show perfect agreement with the conventional calculations based on amplitude techniques. We extend our results to strong coupling using the correlation function of half-BPS operators obtained from the AdS/CFT correspondence.
We consider the ambitwistor description of $mathcal N$=4 supersymmetric extension of U($N$) Yang-Mills theory on Minkowski space $mathbb R^{3,1}$. It is shown that solutions of super-Yang-Mills equations are encoded in real-analytic U($N$)-valued functions on a domain in superambitwistor space ${mathcal L}_{mathbb R}^{5|6}$ of real dimension $(5|6)$. This leads to a procedure for generating solutions of super-Yang-Mills equations on $mathbb R^{3,1}$ via solving a Riemann-Hilbert-type factorization problem on two-spheres in $mathcal L_{mathbb R}^{5|6}$.
BPS Wilson loops in supersymmetric gauge theories have been the subjects of active research since they are often amenable to exact computation. So far most of the studies have focused on loops that do not intersect. In this paper, we derive exact results for intersecting 1/8 BPS Wilson loops in N=4 supersymmetric Yang-Mills theory, using a combination of supersymmetric localization and the loop equation in 2d gauge theory. The result is given by a novel matrix-model-like representation which couples multiple contour integrals and a Gaussian matrix model. We evaluate the integral at large N, and make contact with the string worldsheet description at strong coupling. As an application of our results, we compute exactly a small-angle limit (and more generally near-BPS limits) of the cross anomalous dimension which governs the UV divergence of intersecting Wilson lines. The same quantity describes the soft anomalous dimension of scattering amplitudes of W-bosons in the Coulomb branch.
Quantum correlators of pure supersymmetric Yang-Mills theories in D=3,4,6 and 10 dimensions can be reformulated via the non-linear and non-local transformation (`Nicolai map) that maps the full functional measure of the interacting theory to that of a free bosonic theory. As a special application we show that for the maximally extended N=4 theory in four dimensions, and up to order O(g^2), all known results for scalar correlators can be recovered in this way without any use of anti-commuting variables, in terms of a purely bosonic and ghost free functional measure for the gauge fields. This includes in particular the dilatation operator yielding the anomalous dimensions of composite operators. The formalism is thus competitive with more standard perturbative techniques.