Do you want to publish a course? Click here

Confronting Scaling Relations of Spiral Galaxies with Hierarchical Models of Disk Formation

256   0   0.0 ( 0 )
 Added by Aaron Dutton
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The scaling relations between rotation velocity, size and luminosity form a benchmark test for any theory of disk galaxy formation. We confront recent theoretical models of disk formation to a recent large compilation of such scaling relations. We stress the importance of achieving a fair comparison between models and observations.



rate research

Read More

We construct a large data set of global structural parameters for 1300 field and cluster spiral galaxies and explore the joint distribution of luminosity L, optical rotation velocity V, and disk size R at I- and 2MASS K-bands. The I- and K-band velocity-luminosity (VL) relations have log-slopes of 0.29 and 0.27, respectively with sigma_ln(VL)~0.13, and show a small dependence on color and morphological type in the sense that redder, early-type disk galaxies rotate faster than bluer, later-type disk galaxies for most luminosities. The VL relation at I- and K-bands is independent of surface brightness, size and light concentration. The log-slope of the I- and K-band RL relations is a strong function of morphology and varies from 0.25 to 0.5. The average dispersion sigma_ln(RL) decreases from 0.33 at I-band to 0.29 at K, likely due to the 2MASS selection bias against lower surface brightness galaxies. Measurement uncertainties are sigma_ln(V)~0.09, sigma_ln(L)~0.14 and somewhat larger and harder to estimate for ln(R). The color dependence of the VL relation is consistent with expectations from stellar population synthesis models. The VL and RL residuals are largely uncorrelated with each other; the RV-RL residuals show only a weak positive correlation. These correlations suggest that scatter in luminosity is not a significant source of the scatter in the VL and RL relations. The observed scaling relations can be understood in the context of a model of disk galaxies embedded in dark matter halos that invokes low mean spin parameters and dark halo expansion, as we describe in our companion paper (Dutton et al. 2007). We discuss in two appendices various pitfalls of standard analytical derivations of galaxy scaling relations, including the Tully-Fisher relation with different slopes. (Abridged).
147 - E. Laurikainen , H. Salo , R. Buta 2010
Photometric scaling relations are studied for S0 galaxies and compared with those for spirals. New 2D K_s-band multi-component decompositions are presented for 122 early-type disk galaxies. Combining with our previous decompositions, the final sample consists of 175 galaxies. As a comparison sample we use the Ohio State University Bright Spiral Galaxy Survey (OSUBSGS), for which similar decompositions have previously been made by us. Our main results are: (1) Important scaling relations are present, indicating that the formative processes of bulges and disks in S0s are coupled like has been previously found for spirals. (2) We obtain median r_{eff}/h_r = 0.20, 0.15 and 0.10 for S0, S0/a-Sa and Sab-Sc galaxies: these are smaller than predicted by simulation models in which bulges are formed by galaxy mergers. (3) The properties of bulges of S0s are different from the elliptical galaxies, which is manifested in the M_K(bulge) vs r_{eff} relation, in the photometric plane, and to some extent also in the Kormendy relation. The bulges of S0s are similar to bulges of spirals with M_K(bulge) < -20 mag. Some S0s have small bulges, but their properties are not compatible with the idea that they could evolve to dwarfs by galaxy harassment. (4) The relative bulge flux B/T for S0s covers the full range found in the Hubble sequence. (5) The values and relations of the parameters of the disks of the S0 galaxies in NIRS0S are similar to those obtained for spirals in the OSUBSGS. Overall, our results support the view that spiral galaxies with bulges brighter than -20 mag in the K-band can evolve directly into S0s, due to stripping of gas followed by truncated star formation.
64 - Josefa Perez 2005
We investigate the star formation activity in galaxy pairs in chemical hydrodynamical simulations consistent with a Lambda-CDM scenario. A statistical analysis of the effects of galaxy interactions on the star formation activity as a function of orbital parameters shows that close encounters (r < 30 kpc/h) can be effectively correlated with an enhancement of star formation activity with respect to galaxies without a close companion. Our results suggest that the stability properties of systems are also relevant in this process. We found that the passive star forming galaxies pairs tend to have deeper potential wells, older stellar populations, and less leftover gas than active star forming ones. In order to assess the effects that projection and interlopers could introduce in observational samples, we have also constructed and analysed projected simulated catalogs of galaxy pairs. In good agreement with observations, our results show a threshold (rp < 25 kpc/h) for interactions to enhance the star formation activity with respect to galaxies without a close companion. Finally, analysing the environmental effect, we detect the expected SFR-local density relation for both pairs and isolated galaxy samples, although the density dependence is stronger for galaxies in pairs suggesting a relevant role for interactions in driving this relation.
We study the kinematics and scaling relations of a sample of 43 giant spiral galaxies that have stellar masses exceeding $10^{11}$ $M_odot$ and optical discs up to 80 kpc in radius. We use a hybrid 3D-1D approach to fit 3D kinematic models to long-slit observations of the H$alpha$-[NII] emission lines and we obtain robust rotation curves of these massive systems. We find that all galaxies in our sample seem to reach a flat part of the rotation curve within the outermost optical radius. We use the derived kinematics to study the high-mass end of the two most important scaling relations for spiral galaxies: the stellar/baryonic mass Tully-Fisher relation and the Fall (mass-angular momentum) relation. All galaxies in our sample, with the possible exception of the two fastest rotators, lie comfortably on both these scaling relations determined at lower masses, without any evident break or bend at the high-mass regime. When we combine our high-mass sample with lower-mass data from the Spitzer Photometry & Accurate Rotation Curves catalog, we find a slope of $alpha=4.25pm0.19$ for the stellar Tully-Fisher relation and a slope of $gamma=0.64pm0.11$ for the Fall relation. Our results indicate that most, if not all, of these rare, giant spiral galaxies are scaled
We explore how the slopes and scatters of the scaling relations of disk galaxies (Vm-L[-M], R-L[-M], and Vm-R) do change when moving from B to K bands and to stellar and baryonic quantities. For our compiled sample of 76 normal, non-interacting high and low surface brightness galaxies, we find some changes, which evidence evolution effects, mainly related to gas infall and star formation (SF). We also explore correlations among the (B-K) color, stellar mass fraction fs, mass M (luminosity L), and surface density (SB), as well as correlations among the residuals of the scaling relations. Some of our findings are: (i) the scale length Rb is a third parameter in the baryonic TF relation and the residuals of this relation follow a trend (slope ~-0.15) with the residuals of the Rb-Mb relation; for the stellar and K band cases, R is not anymore a third parameter and the mentioned trend disappears; (ii) among the TFRs, the B-band TFR is the most scattered; in this case, the color is a third parameter; (iii) the LSB galaxies break some observed trends, which suggest a threshold in the gas surface density Sg, below which the SF becomes independent of the gas infall rate and Sg. Our results are interpreted and discussed in the light of LCDM-based models of galaxy evolution. The models explain not only the baryonic scaling relations, but also most of the processes responsible for the observed changes in the slopes, scatters, and correlations among the residuals when changing to stellar and luminous quantities. The baryon fraction is required to be smaller than 0.05 on average. We detect some potential difficulties for the models: the observed color-M and surface density-M correlations are steeper, and the intrinsic scatter in the baryonic TFR is smaller than those predicted. [abridged]
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا