Do you want to publish a course? Click here

Limits to the sensitivity of a low noise compact atomic gravimeter

212   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

A detailed analysis of the most relevant sources of phase noise in an atomic interferometer is carried out, both theoretically and experimentally. Even a short interrogation time of 100 ms allows our cold atom gravimeter to reach an excellent short term sensitivity to acceleration of $1.4times 10^{-8}$g at 1s. This result relies on the combination of a low phase noise laser system, efficient detection scheme and good shielding from vibrations. In particular, we describe a simple and robust technique of vibration compensation, which is based on correcting the interferometer signal by using the AC acceleration signal measured by a low noise seismometer.



rate research

Read More

110 - Nicola Malossi 2009
We demonstrate the realization of a new scheme for cold atom gravimetry based on the use of double diffraction beamsplitters recently demonstrated in cite{Leveque}, where the use of two retro-reflected Raman beams allows symmetric diffraction in $pm hbar k_{eff}$ momenta. Though in principle restricted to the case of zero Doppler shift, for which the two pairs of Raman beams are simultaneously resonant, we demonstrate that such diffraction pulses can remain efficient on atoms with non zero velocity, such as in a gravimeter, when modulating the frequency of one of the two Raman laser sources. We use such pulses to realize an interferometer insensitive to laser phase noise and some of the dominant systematics. This reduces the technical requirements and would allow the realization of a simple atomic gravimeter. We demonstrate a sensitivity of $1.2times10^{-7}g$ per shot.
Spin noise spectroscopy is emerging as a powerful technique for studying the dynamics of various spin systems also beyond their thermal equilibrium and linear response. Here, we study spin fluctuations of room-temperature neutral atoms in a Bell-Bloom type magnetometer. Driven by indirect pumping and undergoing a parametric excitation, this system is known to produce noise-squeezing. Our measurements not only reveal a strong asymmetry in the noise distribution of the atomic signal quadratures at the magnetic resonance, but also provide insight into the mechanism behind its generation and evolution. In particular, a structure in the spectrum is identified which allows to investigate the main dependencies and the characteristic timescales of the noise process. The results obtained are compatible with parametrically induced noise squeezing. Notably, the noise spectrum provides information on the spin dynamics even in regimes where the macroscopic atomic coherence is lost, effectively enhancing the sensitivity of the measurements. Our work promotes spin noise spectroscopy as a versatile technique for the study of noise squeezing in a wide range of spin based magnetic sensors.
We present a laser system with a linewidth and long-term frequency stability at the 50 kHz level. It is based on a Ti:Sapphire laser emitting radiation at 882 nm which is referenced to an atomic transition. For this, the length of an evacuated transfer cavity is stabilized to a reference laser at 780 nm locked to the $^{85}$Rb D$_2$-line via modulation transfer spectroscopy. Gapless frequency tuning of the spectroscopy laser is realized using the sideband locking technique to the transfer cavity. In this configuration, the linewidth of the spectroscopy laser is derived from the transfer cavity, while the long-term stability is derived from the atomic resonance. Using an optical frequency comb, the frequency stability and linewidth of both lasers are characterized by comparison against an active hydrogen maser frequency standard and an ultra-narrow linewidth laser, respectively. The laser system presented here will be used for spectroscopy of the $1s^{2}2s^{2}2p ^{2}P_{1/2} - ^{2}P_{3/2}$ transition in sympathetically cooled Ar$^{13+}$ ions at 441nm after frequency doubling.
129 - P. Cheinet 2005
We present here an analysis of the sensitivity of a time-domain atomic interferometer to the phase noise of the lasers used to manipulate the atomic wave-packets. The sensitivity function is calculated in the case of a three pulse Mach-Zehnder interferometer, which is the configuration of the two inertial sensors we are building at BNM-SYRTE. We successfully compare this calculation to experimental measurements. The sensitivity of the interferometer is limited by the phase noise of the lasers, as well as by residual vibrations. We evaluate the performance that could be obtained with state of the art quartz oscillators, as well as the impact of the residual phase noise of the phase-lock loop. Requirements on the level of vibrations is derived from the same formalism.
Cosmic Explorer (CE) is a next-generation ground-based gravitational-wave observatory concept, envisioned to begin operation in the 2030s, and expected to be capable of observing binary neutron star and black hole mergers back to the time of the first stars. Cosmic Explorers sensitive band will extend below 10 Hz, where the design is predominantly limited by geophysical, thermal, and quantum noises. In this work, thermal, seismic, gravity-gradient, quantum, residual gas, scattered-light, and servo-control noises are analyzed in order to motivate facility and vacuum system design requirements, potential test mass suspensions, Newtonian noise reduction strategies, improved inertial sensors, and cryogenic control requirements. Our analysis shows that with improved technologies, Cosmic Explorer can deliver a strain sensitivity better than $10^{-23}/mathrm{Hz}^{1/2}$ down to 5 Hz. Our work refines and extends previous analysis of the Cosmic Explorer concept and outlines the key research areas needed to make this observatory a reality.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا