Do you want to publish a course? Click here

Kinematic Sunyaev-Zeldovich Cosmic Microwave Background Temperature Anisotropies Generated by Gas in Cosmic Structures

116   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

If the gas in filaments and halos shares the same velocity field than the luminous matter, it will generate measurable temperature anisotropies due to the Kinematic Sunyaev-Zeldovich effect. We compute the distribution function of the KSZ signal produced by a typical filament and show it is highly non-gaussian. The combined contribution of the Thermal and Kinematic SZ effects of a filament of size $Lsimeq 5$Mpc and electron density $n_esimeq 10^3m^{-3}$ could explain the cold spots of $deltasim -200mu$K on scales of 30 found in the Corona Borealis Supercluster by the VSA experiment. PLANCK, with its large resolution and frequency coverage, could provide the first evidence of the existence of filaments in this region. The KSZ contribution of the network of filaments and halo structures to the radiation power spectrum peaks around $lsim 400$, a scale very different from that of clusters of galaxies, with a maximum amplitude $l(l+1)C_l/2pisim 10-25 (mu K)^2$, depending on model parameters, i.e., $sigma_8$ and the Jeans length. About 80% of the signal comes from filaments with redshift $zle 0.1$. Adding this component to the intrinsic Cosmic Microwave Background temperature anisotropies of the concordance model improves the fit to WMAP 3yr data by $Deltachi^2simeq 1$. The improvement is not statistically significant but a more systematic study could demonstrate that gas could significantly contribute to the anisotropies measured by WMAP.



rate research

Read More

The standard inflationary model presents a simple scenario within which the homogeneity, isotropy and flatness of the universe appear as natural outcomes and, in addition, fluctuations in the energy density are originated during the inflationary phase. These seminal density fluctuations give rise to fluctuations in the temperature of the Cosmic Microwave Background (CMB) at the decoupling surface. Afterward, the CMB photons propagate almost freely, with slight gravitational interactions with the evolving gravitational field present in the large scale structure (LSS) of the matter distribution and a low scattering rate with free electrons after the universe becomes reionized. These secondary effects slightly change the shape of the intensity and polarization angular power spectra (APS) of the radiation. The APS contain very valuable information on the parameters characterizing the background model of the universe and those parametrising the power spectra of both matter density perturbations and gravitational waves. In the last few years data from sensitive experiments have allowed a good determination of the shape of the APS, providing for the first time a model of the universe very close to spatially flat. In particular the WMAP first year data, together with other CMB data at higher resolution and other cosmological data sets, have made possible to determine the cosmological parameters with a precision of a few percent. The most striking aspect of the derived model of the universe is the unknown nature of most of its energy contents. This and other open problems in cosmology represent exciting challenges for the CMB community. The future ESA Planck mission will undoubtely shed some light on these remaining questions.
The cosmic microwave background (CMB) contains perturbations that are close to Gaussian and isotropic. This means that its information content, in the sense of the ability to constrain cosmological models, is closely related to the number of modes probed in CMB power spectra. Rather than making forecasts for specific experimental setups, here we take a more pedagogical approach and ask how much information we can extract from the CMB if we are only limited by sample variance. We show that, compared with temperature measurements, the addition of E-mode polarization doubles the number of modes available out to a fixed maximum multipole, provided that all of the TT, TE, and EE power spectra are measured. However, the situation in terms of constraints on particular parameters is more complicated, as we explain and illustrate graphically. We also discuss the enhancements in information that can come from adding B-mode polarization and gravitational lensing. We show how well one could ever determine the basic cosmological parameters from CMB data compared with what has been achieved with Planck, which has already probed a substantial fraction of the TT information. Lastly, we look at constraints on neutrino mass as a specific example of how lensing information improves future prospects beyond the current 6-parameter model.
We present 30 GHz measurements of the angular power spectrum of the cosmic microwave background (CMB) obtained with the Sunyaev-Zeldovich Array. The measurements are sensitive to arcminute angular scales, where secondary anisotropy from the Sunyaev-Zeldovich effect (SZE) is expected to dominate. For a broad bin centered at multipole 4066 we find 67+77-50 uK^2, of which 26+/-5 uK^2 is the expected contribution from primary CMB anisotropy and 80+/-54 uK^2 is the expected contribution from undetected radio sources. These results imply an upper limit of 155 uK^2 (95% CL) on the secondary contribution to the anisotropy in our maps. This level of SZE anisotropy power is consistent with expectations based on recent determinations of the normalization of the matter power spectrum, i.e., sigma_8~0.8.
Suggestions have been made that the microwave background observed by COBE and WMAP and dubbed Cosmic Microwave Background (CMB) may have an origin within our own Galaxy or Earth. To consider the signal that may be correlated with Earth, a correlate-by-eye exercise was attempted by overlaying the CMB map from Wilkinson Microwave Anisotropy Probe on a topographical map of Earth. Remarkably, several hot spots in the CMB map are found to be well aligned with either large cities on Earth or regions of high altitude. To further study the correlations between Earth and CMB, we performed a complicated cross-correlation analysis in the multipole space. The overall correlations are detected at more than 5 sigma confidence level. These results can be naively interpreted to suggest that large angular scale fluctuations in CMB are generated on Earth by a process that traces the altitude relative to a mean radius. Simply extending our analysis, we suggest that cross-correlations between CMB and any other map of a Solar system body, image of a person, or an image of an animal will be detected at some statistical significance. It is unclear how Occams razor can be applied in such a situation to identify which sources are responsible for CMB fluctuations.
95 - J. Weller , A.M. Lewis 2003
In this note we investigate the effects of perturbations in a dark energy component with a constant equation of state on large scale cosmic microwave background anisotropies. The inclusion of perturbations increases the large scale power. We investigate more speculative dark energy models with w<-1 and find the opposite behaviour. Overall the inclusion of perturbations in the dark energy component increases the degeneracies. We generalise the parameterization of the dark energy fluctuations to allow for an arbitrary const ant sound speeds and show how constraints from cosmic microwave background experiments change if this is included. Combining cosmic microwave background with large scale structure, Hubble parameter and Supernovae observations we obtain w=-1.02+-0.16 (1 sigma) as a constraint on the equation of state, which is almost independent of the sound speed chosen. With the presented analysis we find no significant constraint on the constant speed of sound of the dark energy component.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا