Do you want to publish a course? Click here

Some improvements to the spherical collapse model

116   0   0.0 ( 0 )
 Added by Antonino Del Popolo
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

I study the joint effect of dynamical friction, tidal torques and cosmological constant on clusters of galaxies formation I show that within high-density environments, such as rich clusters of galaxies, both dynamical friction and tidal torques slows down the collapse of low-? peaks producing an observable variation in the time of collapse of the perturbation and, as a consequence, a reduction in the mass bound to the collapsed perturbation Moreover, the delay of the collapse produces a tendency for less dense regions to accrete less mass, with respect to a classical spherical model, inducing a biasing of over-dense regions toward higher mass I show how the threshold of collapse is modified if dynamical friction, tidal torques and a non-zero cosmological constant are taken into account and I use the Extended Press Schecter (EPS) approach to calculate the effects on the mass function Then, I compare the numerical mass function given in Reed et al (2003) with the theoretical mass function obtained in the present paper I show that the barrier obtained in the present paper gives rise to a better description of the mass function evolution with respect to other previous models (Sheth & Tormen 1999, MNRAS, 308, 119 (hereafter ST); Sheth & Tormen 2002, MNRAS, 329, 61 (hereafter ST1))



rate research

Read More

In this work, we study the formation and evolution of dark matter halos by means of the spherical infall model with shell-crossing. We present a framework to tackle this effect properly based on the numerical follow-up, with time, of that individual shell of matter that contains always the same fraction of mass with respect to the total mass. In this first step, we do not include angular momentum, velocity dispersion or triaxiality. Within this framework - named as the Spherical Shell Tracker (SST) - we investigate the dependence of the evolution of the halo with virial mass, with the adopted mass fraction of the shell, and for different cosmologies. We find that our results are very sensitive to a variation of the halo virial mass or the mass fraction of the shell that we consider. However, we obtain a negligible dependence on cosmology. Furthermore, we show that the effect of shell-crossing plays a crucial role in the way that the halo reaches the stabilization in radius and the virial equilibrium. We find that the values currently adopted in the literature for the actual density contrast at the moment of virialization, delta_vir, may not be accurate enough. In this context, we stress the problems related to the definition of a virial mass and a virial radius for the halo. The question of whether the results found here may be obtained by tracking the shells with an analytic approximation remains to be explored.
Spherical vacuum and scalar collapse for the Starobinsky R^2 model is simulated. Obtained by considering the quantum-gravitational effects, this model would admit some cases of singularity-free cosmological spacetimes. It is found, however, that in vacuum and scalar collapse, when f or the physical scalar field is strong enough, a black hole including a central singularity can be formed. In addition, near the central singularity, gravity dominates the repulsion from the potential, so that in some circumstances the Ricci scalar is pushed to infinity by gravity. Therefore, the semiclassical effects as included here do not avoid the singularity problem in general relativity. A strong physical scalar field can prevent the Ricci scalar from growing to infinity. Vacuum collapse for the RlnR model is explored, and it is observed that for this model the Ricci scalar can also go to infinity as the central singularity is approached. Therefore, this feature seems universal in vacuum and scalar collapse in f(R) gravity.
We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in the presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse depends on the initial comoving size of the inhomogeneity.
We report on the buckling and subsequent collapse of orthotropic elastic spherical shells under volume and pressure control. Going far beyond what is known for isotropic shells, a rich morphological phase space with three distinct regimes emerges upon variation of shell slenderness and degree of orthotropy. Our extensive numerical simulations are in agreement with experiments using fabricated polymer shells. The shell buckling pathways and corresponding strain energy evolution are shown to depend strongly on material orthotropy. We find surprisingly robust orthotropic structures with strong similarities to stomatocytes and tricolpate pollen grains, suggesting that the shape of several of Natures collapsed shells could be understood from the viewpoint of material orthotropy.
This paper develops the zero-dimensional (0D) hydrodynamic coronal loop model Enthalpy-based Thermal Evolution of Loops (EBTEL) proposed by Klimchuk et al (2008), which studies the plasma response to evolving coronal heating, especially impulsive heating events. The basis of EBTEL is the modelling of mass exchange between the corona and transition region and chromosphere in response to heating variations, with the key parameter being the ratio of transition region to coronal radiation. We develop new models for this parameter that now include gravitational stratification and a physically motivated approach to radiative cooling. A number of examples are presented, including nanoflares in short and long loops, and a small flare. The new features in EBTEL are important for accurate tracking of, in particular, the density. The 0D results are compared to a 1D hydro code (Hydrad) with generally good agreement. EBTEL is suitable for general use as a tool for (a) quick-look results of loop evolution in response to a given heating function, (b) extensive parameter surveys and (c) situations where the modelling of hundreds or thousands of elemental loops is needed. A single run takes a few seconds on a contemporary laptop.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا