Do you want to publish a course? Click here

An evolution of the IR-Radio correlation at very low flux densities?

78   0   0.0 ( 0 )
 Added by Rob Beswick
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we investigate the radio-MIR correlation at very low flux densities using extremely deep 1.4 GHz sub-arcsecond angular resolution MERLIN+VLA observations of a 8.5 by 8.5 field centred upon the Hubble Deep Field North, in conjunction with Spitzer 24micron data. From these results the MIR-radio correlation is extended to the very faint (~microJy) radio source population. Tentatively we detect a small deviation from the correlation at the faintest IR flux densities. We suggest that this small observed change in the gradient of the correlation is the result of a suppression of the MIR emission in faint star-forming galaxies. This deviation potentially has significant implications for using either the MIR or non-thermal radio emission as a star-formation tracer of very low luminosity galaxies.



rate research

Read More

Using extremely deep (rms 3.3 microJy/bm) 1.4GHz sub-arcsecond resolution MERLIN + VLA radio observations of a 8.5 by 8.5 field centred upon the Hubble Deep Field North, in conjunction with Spitzer 24 micron data we present an investigation of the radio-MIR correlation at very low flux densities. By stacking individual sources within these data we are able to extend the MIR-radio correlation to the extremely faint (~microJy and even sub-microJy) radio source population. Tentatively we demonstrate a small deviation from the correlation for the faintest MIR sources. We suggest that this small observed change in the gradient of the correlation is the result of a suppression of the MIR emission in faint star-forming galaxies. This deviation potentially has significant implications for using either the MIR or non-thermal radio emission as a star-formation tracer at low luminosities.
We present a simplified chemical and thermal model designed to allow computationally efficient study of the thermal evolution of metal-poor gas within large numerical simulations. Our main simplification is the neglect of the molecular chemistry of the heavy elements. The only molecular chemistry retained within the model is the formation and destruction of molecular hydrogen. Despite this major simplification, the model allows for accurate treatment of the thermal evolution of the gas within a large volume of parameter space. It is valid for temperatures 50 < T < 10000 K and metallicities 0 < Z < 0.1 Z_solar. In gas with a metallicity Z = 0.1 Z_solar, and in the absence of an incident ultraviolet radiation field, it is valid for hydrogen number densities n_H < 500 / t_char cm^-3, where t_char is the size in Myr of the characteristic physical timescale of interest in the problem. If Z << 0.1 Z_solar, or if a strong ultraviolet radiation field is present, then the model remains accurate up to significantly higher densities. We also discuss some possible applications of this model.
Recently, measurements of abundances in extremely metal poor (EMP) stars have brought new constraints on stellar evolution models. In an attempt to explain the origin of the abundances observed, we computed pre--supernova evolution models, explosion models and the related nucleosynthesis. In this paper, we start by presenting the pre-SN models of rotating single stars with metallicities ranging from solar metallicity down to almost metal free. We then review key processes in core-collapse and bounce, before we integrate them in a simplistic parameterization for 3D MHD models, which are well underway and allow one to follow the evolution of the magnetic fields during collapse and bounce. Finally, we present explosive nucleosynthesis results including neutrino interactions with matter, which are calculated using the outputs of the explosion models. The main results of the pre-SN models are the following. First, primary nitrogen is produced in large amount in models with an initial metallicity $Z=10^{-8}$. Second, at the same metallicity of $Z=10^{-8}$ and for models with an initial mass larger than about 60 Mo, rotating models may experience heavy mass loss (up to more than half of the initial mass of the star). The chemical composition of these winds can qualitatively reproduce the abundance patterns observed at the surface of carbon-rich EMP stars. Explosive nucleosynthesis including neutrino-matter interactions produce improved abundances for iron group elements, in particular for scandium and zinc. It also opens the way to a new neutrino and proton rich process ($ u$p-process) able to contribute to the nucleosynthesis of elements with A > 64. (Abridged)
We have used archival 74 MHz VLA data spanning the last 15 years in combination with new data from the Long Wavelength Demonstrator Array (LWDA) and data from the literature covering the last 50 years to explore the evolution of Cas A at low radio frequencies. We find that the secular decrease of the flux density of Cas A at ~80 MHz is rather stable over five decades of time, decreasing at a rate of 0.7-0.8% yr^-1. This is entirely consistent with previous estimates at frequencies as low as 38 MHz, indicating that the secular decrease is roughly the same at low frequencies, at least between 38 and 80 MHz. We also find strong evidence for as many as four modes of flux density oscillation about the slower secular decrease with periods of 3.10+/-0.02$ yr, 5.1+/-0.3 yr, 9.0+/-0.2 yr, and 24+/-2 yr. These are also consistent with fluctuations seen previously to occur on scales of a few years. These results provide compelling motivation for a thorough low frequency monitoring campaign of Cas A to constrain the nature and physical origins of these fluctuations, and to be able to better predict the flux density of Cas A at any given epoch so that it may be used as a reliable low frequency calibrator.
73 - D. Pierini 2003
We present the correlation between the far-infrared (FIR) and radio emissions from a composite sample of 72 nearby normal galaxies observed with the ISOPHOT instrument on board the Infrared Space Observatory. The galaxies in the sample have measurements at three FIR wavelengths (60, 100 and 170 micron), which allowed a direct determination of the warm and cold FIR emission components. This is the first time that the correlation has been established for the total FIR luminosity, of which most is carried by the cold dust component predominantly emitting longwards of the spectral coverage of IRAS. The slope of this correlation is slightly non-linear (1.10+/-0.03). Separate correlations between the warm and cold FIR emission components and the radio emission have also been derived. The slope of the warm FIR/radio correlation was found to be linear (1.03+/-0.03). For the cold FIR/radio correlation we found a slightly non-linear (1.13+/-0.04) slope. We qualitatively interpret the correlations in terms of star formation rate and find that both the FIR and radio emissions may be consistent with a non-linear dependence on star formation rate for galaxies not undergoing starburst activity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا