Do you want to publish a course? Click here

Crossover of aging dynamics in polymer glass: from cumulative aging to non-cumulative aging

121   0   0.0 ( 0 )
 Added by Koji Fukao
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The aging behavior of polymer glass, poly(methyl methacrylate), has been investigated through the measurement of ac dielectric susceptibility ata fixed frequency after a temperature shift $Delta T$ ($le $ 20 K)between two temperatures, $T_1$ and $T_2$. A crossover from cumulative aging to non-cumulative aging could be observed with increasing $Delta T$ using a twin temperature ($T$-) shift measurement. Based on a growth law of a dynamical coherent length given by activated dynamics, we obtained a unique coherent length for positive and negative $T$-shifts. The possibility of the existence of temperature chaos in polymer glasses is discussed.



rate research

Read More

Recent experiments and simulations have revealed glassy features in the cytoplasm, living tissues as well as dense assemblies of self propelled colloids. This leads to a fundamental question: how do these non-equilibrium (active) amorphous materials differ from conventional passive glasses, created either by lowering temperature or by increasing density? To address this we investigate the aging behaviour after a quench to an almost arrested state of a model active glass former, a Kob-Andersen glass in two dimensions. Each constituent particle is driven by a constant propulsion force whose direction diffuses over time. Using extensive molecular dynamics simulations we reveal rich aging behaviour of this dense active matter system: short persistence times of the active forcing lead to effective thermal aging; in the opposite limit we find a two-step aging process with active athermal aging at short times followed by activity-driven aging at late times. We develop a dedicated simulation method that gives access to this long-time scaling regime for highly persistent active forces.
75 - Jie Lin 2021
Many experiments show that protein condensates formed by liquid-liquid phase separation exhibit aging rheological properties. Quantitatively, recent experiments by Jawerth et al. (Science 370, 1317, 2020) show that protein condensates behave as aging Maxwell fluids with an increasing relaxation time as the condensates age. Despite the universality of this aging phenomenon, a theoretical understanding of this aging behavior is lacking. In this work, we propose a mesoscopic model of protein condensates in which a phase transition from aging phase to non-aging phase occurs as the control parameter changes, such as temperature. The model predicts that protein condensates behave as viscoelastic Maxwell fluids at all ages, with the macroscopic viscosity increasing over time. The model also predicts that protein condensates are non-Newtonian fluids under a constant shear rate with the shear stress increasing over time. Our model successfully explains multiple existing experimental observations and also makes general predictions that are experimentally testable.
Motivated by the mean field prediction of a Gardner phase transition between a normal glass and a marginally stable glass, we investigate the off-equilibrium dynamics of three-dimensional polydisperse hard spheres, used as a model for colloidal or granular glasses. Deep inside the glass phase, we find that a sharp crossover pressure $P_{rm G}$ separates two distinct dynamical regimes. For pressure $P < P_{rm G}$, the glass behaves as a normal solid, displaying fast dynamics that quickly equilibrates within the glass free energy basin. For $P>P_{rm G}$, instead, the dynamics becomes strongly anomalous, displaying very large equilibration time scales, aging, and a constantly increasing dynamical susceptibility. The crossover at $P_{rm G}$ is strongly reminiscent of the one observed in three-dimensional spin-glasses in an external field, suggesting that the two systems could be in the same universality class, consistently with theoretical expectations.
106 - V. Orlyanchik , , Z. Ovadyahu 2003
A new protocol for an aging experiment is studied in the electron-glass phase of indium-oxide films. In this protocol, the sample is exposed to a non-ohmic electric field F for a waiting time t_{w} during which the system attempts to reach a steady state (rather than relax towards equilibrium). The relaxation of the excess conductance dG after ohmic conditions are restored exhibit simple aging as long as F is not too large.
282 - M-A. Suarez , N. Kern , E. Pitard 2008
Using molecular dynamics computer simulations we investigate the aging dynamics of a gel. We start from a fractal structure generated by the DLCA-DEF algorithm, onto which we then impose an interaction potential consisting of a short-range attraction as well as a long-range repulsion. After relaxing the system at T=0, we let it evolve at a fixed finite temperature. Depending on the temperature T we find different scenarios for the aging behavior. For T>0.2 the fractal structure is unstable and breaks up into small clusters which relax to equilibrium. For T<0.2 the structure is stable and the dynamics slows down with increasing waiting time. At intermediate and low T the mean squared displacement scales as t^{2/3} and we discuss several mechanisms for this anomalous time dependence. For intermediate T, the self-intermediate scattering function is given by a compressed exponential at small wave-vectors and by a stretched exponential at large wave-vectors. In contrast, for low T it is a stretched exponential for all wave-vectors. This behavior can be traced back to a subtle interplay between elastic rearrangements, fluctuations of chain-like filaments, and heterogeneity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا