We find the three-dimensional gravity dual of a process in which two clouds of (1+1)-dimensional conformal matter moving in opposite directions collide. This gives the most general conformally invariant holographic flow in the 1+1 dimensional boundary theory in terms of two arbitrary functions. With a suitable choice of the arbitrary functions the process can be interpreted as an opaque collision of two extended systems with central, fragmentation and interaction regions. Comparison with classical gluon field calculations relates the size of the system with the saturation scale.
We study the application of AdS/CFT duality to longitudinal boost invariant Bjorken expansion of QCD matter produced in ultrarelativistic heavy ion collisions. As the exact (1+4)-dimensional bulk solutions for the (1+3)-dimensional boundary theory are not known, we investigate in detail the (1+1)-dimensional boundary theory, where the bulk is AdS_3 gravity. We find an exact bulk solution, show that this solution describes part of the spinless Banados-Teitelboim-Zanelli (BTZ) black hole with the angular dimension unwrapped, and use the thermodynamics of the BTZ hole to recover the time-dependent temperature and entropy density on the boundary. After separating from the holographic energy-momentum tensor a vacuum contribution, given by the extremal black hole limit in the bulk, we find that the boundary fluid is an ideal gas in local thermal equilibrium. Including angular momentum in the bulk gives a boundary flow that is boost invariant but has a nonzero longitudinal velocity with respect to the Bjorken expansion.
We study quantum corrections to projectable Horava gravity with $z = 2$ scaling in 2+1 dimensions. Using the background field method, we utilize a non-singular gauge to compute the anomalous dimension of the cosmological constant at one loop, in a normalization adapted to the spatial curvature term.
We formulate four-dimensional conformal gravity with (Anti-)de Sitter boundary conditions that are weaker than Starobinsky boundary conditions, allowing for an asymptotically subleading Rindler term concurrent with a recent model for gravity at large distances. We prove the consistency of the variational principle and derive the holographic response functions. One of them is the conformal gravity version of the Brown-York stress tensor, the other is a `partially massless response. The on-shell action and response functions are finite and do not require holographic renormalization. Finally, we discuss phenomenologically interesting examples, including the most general spherically symmetric solutions and rotating black hole solutions with partially massless hair.
In this paper we consider 2+1-dimensional gravity coupled to N point-particles. We introduce a gauge in which the $z$- and $bar{z}$-components of the dreibein field become holomorphic and anti-holomorphic respectively. As a result we can restrict ourselves to the complex plane. Next we show that solving the dreibein-field: $e^a_z(z)$ is equivalent to solving the Riemann-Hilbert problem for the group $SO(2,1)$. We give the explicit solution for 2 particles in terms of hypergeometric functions. In the N-particle case we give a representation in terms of conformal field theory. The dreibeins are expressed as correlators of 2 free fermion fields and twistoperators at the position of the particles.
A class of explicitly integrable models of 1+1 dimensional dilaton gravity coupled to scalar fields is described in some detail. The equations of motion of these models reduce to systems of the Liouville equations endowed with energy and momentum constraints. The general solution of the equations and constraints in terms of chiral moduli fields is explicitly constructed and some extensions of the basic integrable model are briefly discussed. These models may be related to high dimensional supergravity theories but here they are mostly considered independently of such interpretations. A brief review of other integrable models of two-dimensional dilaton gravity is also given.