Do you want to publish a course? Click here

Direct optical detection of pure spin current in semiconductors

479   0   0.0 ( 0 )
 Added by Kai Chang
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We suggest a new practical scheme for the direct detection of pure spin current by using the two-color Faraday rotation of optical quantum interference process (QUIP) in a semiconductor system. We demonstrate theoretically that the Faraday rotation of QUIP depends sensitively on the spin orientation and wave vector of the carriers, and can be tuned by the relative phase and the polarization direction of the $omega$ and $2omega$ laser beams. By adjusting these parameters, the magnitude and direction of the spin current can be detected.

rate research

Read More

Excitation of magnetization dynamics by pure spin currents has been recently recognized as an enabling mechanism for spintronics and magnonics, which allows implementation of spin-torque devices based on low-damping insulating magnetic materials. Here we report the first spatially-resolved study of the dynamic modes excited by pure spin current in nanometer-thick microscopic insulating Yttrium Iron Garnet disks. We show that these modes exhibit nonlinear self-broadening preventing the formation of the self-localized magnetic bullet, which plays a crucial role in the stabilization of the single-mode magnetization oscillations in all-metallic systems. This peculiarity associated with the efficient nonlinear mode coupling in low-damping materials can be among the main factors governing the interaction of pure spin currents with the dynamic magnetization in high-quality magnetic insulators.
Conversion of traveling magnons into an electron carried spin current is demonstrated in a time resolved experiment using a spatially separated inductive spin-wave source and an inverse spin Hall effect (ISHE) detector. A short spin-wave packet is excited in a yttrium-iron garnet (YIG) waveguide by a microwave signal and is detected at a distance of 3 mm by an attached Pt layer as a delayed ISHE voltage pulse. The delay in the detection appears due to the finite spin-wave group velocity and proves the magnon spin transport. The experiment suggests utilization of spin waves for the information transfer over macroscopic distances in spintronic devices and circuits.
We propose a practical scheme to generate a pure valley current in monolayer transition metal dichalcogenides by one-photon absorption of linearly polarized light. We show that the pure valley current can be detected by either photoluminescence measurements or the ultrafast pump-probe technique. Our method, together with the previously demonstrated generation of valley polarization, opens up the exciting possibility of ultrafast optical-only manipulation of the valley index. The tilted field effect on the valley current in experiment is also discussed.
107 - J. Li , L. R. Shelford , P. Shafer 2015
By synchronizing a microwave waveform with the synchrotron x-ray pulses, we use the ferromagnetic resonance (FMR) of the Py (Ni81Fe19) layer in a Py/Cu/Cu75Mn25/Cu/Co multilayer to pump a pure spin current into the Cu75Mn25 spacer layer, and then directly probe the spin current in the Cu75Mn25 layer by a time-resolved x-ray magnetic circular dichroism (XMCD). This element-specific pump-probe measurement unambiguously identifies the AC spin current in the Cu75Mn25 layer. In addition, phase resolved x-ray measurements reveal a characteristic bipolar phase behavior of the Co spins that is a fingerprint of spin-current driven spin precession.
We develop a simple method for measuring the electron spin relaxation times $T_1$, $T_2$ and $T_2^*$ in semiconductors and demonstrate its exemplary application to $n$-type GaAs. Using an abrupt variation of the magnetic field acting on electron spins, we detect the spin evolution by measuring the Faraday rotation of a short laser pulse. Depending on the magnetic field orientation, this allows us to measure either the longitudinal spin relaxation time $T_1$ or the inhomogeneous transverse spin dephasing time $T_2^*$. In order to determine the homogeneous spin coherence time $T_2$, we apply a pulse of an oscillating radiofrequency (rf) field resonant with the Larmor frequency and detect the subsequent decay of the spin precession. The amplitude of the rf-driven spin precession is significantly enhanced upon additional optical pumping along the magnetic field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا