No Arabic abstract
The Polyakov loop extended Nambu--Jona-Lasinio (PNJL) model with imaginary chemical potential is studied. The model possesses the extended ${mathbb Z}_{3}$ symmetry that QCD does. Quantities invariant under the extended ${mathbb Z}_{3}$ symmetry, such as the partition function, the chiral condensate and the modified Polyakov loop, have the Roberge-Weiss (RW) periodicity. The phase diagram of confinement/deconfinement transition derived with the PNJL model is consistent with the RW prediction on it and the results of lattice QCD. The phase diagram of chiral transition is also presented by the PNJL model.
Phase transitions in the imaginary chemical potential region are studied by the Polyakov loop extended Nambu-Jona-Lasinio (PNJL) model that possesses the extended Z3 symmetry. The extended Z3 invariant quantities such as the partition function, the chiral condensate and the modifed Polyakov loop have the Roberge-Weiss (RW) periodicity. There appear four types of phase transitions; deconfinement, chiral, Polykov-loop RW and chiral RW transitions. The orders of the chiral and deconfinement transitions depend on the presence or absence of current quark mass, but those of the Polykov-loop RW and chiral RW transitions do not. The scalar-type eightquark interaction newly added in the model makes the chiral transition line shift to the vicinity of the deconfiment transition line.
Properties of QCD at finite imaginary chemical potential are revisited to utilize for the model building of QCD in low energy regimes. For example, the electric holonomy which is closely related to the Polyakov-loop drastically affects thermodynamic quantities beside the Roberge-Weiss transition line. To incorporate several properties at finite imaginary chemical potential, it is important to introduce the holonomy effects to the coupling constant of effective models. This extension is possible by considering the entanglement vertex. We show justifications of the entanglement vertex based on the derivation of the effective four-fermi interaction in the Nambu--Jona-Lasinio model and present its general form with the local approximation. To discuss how to remove model ambiguities in the entanglement vertex, we calculate the chiral condensate with different $mathbb{Z}_3$ sectors and the dual quark condensate.
The critical endpoint (CEP) and the phase structure are studied in the Polyakov-loop extended Nambu--Jona-Lasinio model in which the scalar type eight-quark (sigma^4) interaction and the vector type four-quark interaction are newly added. The sigma^4 interaction largely shifts the CEP toward higher temperature and lower chemical potential, while the vector type interaction does oppositely. At zero chemical potential, the sigma^4 interaction moves the pseudo-critical temperature of the chiral phase transition to the vicinity of that of the deconfinement phase transition.
We investigate theta-vacuum effects on the QCD phase diagram for the realistic 2+1 flavor system, using the three-flavor Polyakov-extended Nambu-Jona-Lasinio (PNJL) model and the entanglement PNJL model as an extension of the PNJL model. The theta-vacuum effects make the chiral transition sharper. For large theta-vacuum angle the chiral transition becomes first order even if the quark number chemical potential is zero, when the entanglement coupling between the chiral condensate and the Polyakov loop is taken into account. We finally propose a way of circumventing the sign problem on lattice QCD with finite theta.
The Nambu Jona-Lasinio model with a Polyakov loop is extended to finite isospin chemical potential case, which is characterized by simultaneous coupling of pion condensate, chiral condensate and Polyakov loop. The pion condensate, chiral condensate and the Polyakov loop as functions of temperature and isospin chemical potential are investigated by minimizing the thermodynamic potential of the system. The resulting $(T,mu_I)$ phase diagram is studied with emphasis on the critical point and Polyakov loop dynamics. The tricritical point for the pion superfluidity phase transition is confirmed and the phase transition for isospin symmetry restoration in high isospin chemical potential region perfectly coincides with the crossover phase transition for Polyakov loop. These results are in agreement with the Lattice QCD data.