Numerical model of the peripheral circulation and dynamical model of the large vessels and the heart are discussed in this paper. They combined together into the global model of blood circulation. Some results of numerical simulations concerning matter transport through the human organism and heart diseases are represented in the end.
Blood system functions are very diverse and important for most processes in human organism. One of its primary functions is matter transport among different parts of the organism including tissue supplying with oxygen, carbon dioxide excretion, drug propagation etc. Forecasting of these processes under normal conditions and in the presence of different pathologies like atherosclerosis, loss of blood, anatomical abnormalities, pathological changing in chemical transformations and others is significant issue for many physiologists. In this connection should be pointed out that global processes are of special interest as they include feedbacks and interdependences among different regions of the organism. Thus the main goal of this work is to develop the model allowing to describe effectively blood flow in the whole organism. As we interested in global processes the models of the four vascular trees (arterial and venous parts of systemic and pulmonary circulation) must be closed with heart and peripheral circulation models. As one of the model applications the processes of the blood loss is considered in the end of the paper.
Many illnesses are associated with an alteration of the immune system homeostasis due to any combination of factors, including exogenous bacterial insult, endogenous breakdown (e.g., development of a disease that results in immuno suppression), or an exogenous hit like surgery that simultaneously alters immune responsiveness and provides access to bacteria, or genetic disorder. We conjecture that, as a consequence of the co-evolution of the immune system of individuals with the ecology of pathogens, the homeostasis of the immune system requires the influx of pathogens. This allows the immune system to keep the ever present pathogens under control and to react and adjust fast to bursts of infections. We construct the simplest and most general system of rate equations which describes the dynamics of five compartments: healthy cells, altered cells, adaptive and innate immune cells, and pathogens. We study four regimes obtained with or without auto-immune disorder and with or without spontaneous proliferation of infected cells. Over all regimes, we find that seven different states are naturally described by the model: (i) strong healthy immune system, (ii) healthy organism with evanescent immune cells, (iii) chronic infections, (iv) strong infections, (v) cancer, (vi) critically ill state and (vii) death. The analysis of stability conditions demonstrates that these seven states depend on the balance between the robustness of the immune system and the influx of pathogens.
The hearts, kidneys, livers, spleens and brains of ${}^57$Fe enriched wild-type and heterozygous $beta$-thalassaemic mice at 1, 3, 6 and 9 months of age were studied by means of Mossbauer Spectroscopy at 80K. Ferritin-like iron depositions in the heart and the brain of the thalassaemic mice were found to be slightly increased while significant amounts of Ferritin-like iron were found in the kidneys, liver and spleen. The ferritin-like iron doublet, found in the organs, could be further separated into two sub-doublets representing the inner and surface structures of ferritin mineral core. Surface iron sites were found to be predominant in the hearts and brains of all mice and in the kidneys of the wild-type animals. Ferritin rich in inner iron sites was predominant in the kidneys of the thalassaemic mice, as well as in the livers and in the spleens. The inner-to-surface iron sites ratio was elevated in all thalassaemic samples indicating that besides ferritin amount, the disease can also affect ferritin mineral core structure.
A three-dimensional unilateral contact problem for articular cartilage layers attached to subchondral bones shaped as elliptic paraboloids is considered in the framework of the biphasic cartilage model. The main novelty of the study is in accounting not only for the normal (vertical), but also for tangential vertical (horisontal) displacements of the contacting surfaces. Exact general relationships have been established between the contact approach and some integral characteristics of the contact pressure, including the contact force. Asymptotic representations for the contact pressure integral characteristics are obtained in terms of the contact approach and some integral characteristics of the contact zone. The main result is represented by the first-order approximation problem.
Radiosensitizers can increase the local treatment efficacy under a relatively low and safe radiation dose, thereby facilitating tumor eradication and minimizing side effects. Here, we report a new class of radiosensitizers that contain several gold (Au) atoms embedded inside a peptide shell (e.g., Au10-12(SG)10-12) and can achieve ultrahigh tumor uptake (10.86 SUV at 24 h post injection) and targeting specificity, efficient renal clearance, and high radiotherapy enhancement.