Stability is perhaps one of the most desirable features of any engineered system, given the importance of being able to predict its response to various environmental conditions prior to actual deployment. Engineered systems are becoming ever more complex, approaching the same levels of biological ecosystems, and so their stability becomes ever more important, but taking on more and more differential dynamics can make stability an ever more elusive property. The Chli-DeWilde definition of stability views a Multi-Agent System as a discrete time Markov chain with potentially unknown transition probabilities. With a Multi-Agent System being considered stable when its state, a stochastic process, has converged to an equilibrium distribution, because stability of a system can be understood intuitively as exhibiting bounded behaviour. We investigate an extension to include Multi-Agent Systems with evolutionary dynamics, focusing on the evolving agent populations of our Digital Ecosystem. We then built upon this to construct an entropy-based definition for the degree of instability (entropy of the limit probabilities), which was later used to perform a stability analysis. The Digital Ecosystem is considered to investigate the stability of an evolving agent population through simulations, for which the results were consistent with the original Chli-DeWilde definition.