No Arabic abstract
We believe the Babcock--Leighton process of poloidal field generation to be the main source of irregularity in the solar cycle. The random nature of this process may make the poloidal field in one hemisphere stronger than that in the other hemisphere at the end of a cycle. We expect this to induce an asymmetry in the next sunspot cycle. We look for evidence of this in the observational data and then model it theoretically with our dynamo code. Since actual polar field measurements exist only from 1970s, we use the polar faculae number data recorded by Sheeley (1991) as a proxy of the polar field and estimate the hemispheric asymmetry of the polar field in different solar minima during the major part of the twentieth century. This asymmetry is found to have a reasonable correlation with the asymmetry of the next cycle. We then run our dynamo code by feeding information about this asymmetry at the successive minima and compare with observational data. We find that the theoretically computed asymmetries of different cycles compare favourably with the observational data, the correlation coefficient being 0.73. Due to the coupling between the two hemispheres, any hemispheric asymmetry tends to get attenuated with time. The hemispheric asymmetry of a cycle either from observational data or from theoretical calculation statistically tends to be less than the asymmetry in the polar field (as inferred from the faculae data) in the preceding minimum. This reduction factor turns out to be 0.38 and 0.60 respectively in observational data and theoretical simulation.
In this article, we report an evidence of very high and statistically significant relationship between hemispheric asymmetry in solar coronal rotation rate and solar activity. Our approach is based on cross correlation of hemispheric asymmetry index (AI) in rotation rate with annual solar activity indicators. To obtain hemispheric asymmetry in solar rotation rate, we use solar full disc (SFD) images at 30.4 nm, 19.5 nm, and 28.4 nm wavelengths for 24th Solar Cycle i.e., for the period from 2008 to 2018, as recorded by the Solar Terrestrial Relations Observatory (STEREO) space mission. Our analysis shows that hemispheric asymmetry in rotation rate is high during the solar maxima from 2011 to 2014. On the other hand, hemispheric asymmetry drops gradually on both sides (i.e., from 2008 to 2011 and from 2014 to 2018). The results show that asymmetry index (AI) leads sunspot numbers by ~1.56 years. This gives a clear indication that hemispheric asymmetry triggers the formation of sunspots working together with the differential rotation of the Sun.
In this paper we study the effects of hemispheric imbalance of magnetic helicity density on breaking the equatorial reflection symmetry of the dynamo generated large-scale magnetic field. Our study employs the axisymmetric dynamo model which takes into account the nonlinear effect of magnetic helicity conservation. We find that the evolution of the net magnetic helicity density, in other words, the magnetic helicity imbalance, on the surface follows the evolution of the parity of the large-scale magnetic field. Random fluctuations of the $alpha$-effect and the helicity fluxes can inverse the causal relationship, i.e., the magnetic helicity imbalance or the imbalance of magnetic helicity fluxes can drive the magnetic parity breaking. We also found that evolution of the net magnetic helicity of the small-scale fields follows the evolution of the net magnetic helicity of the large-scale fields with some time lag. We interpret this as an effect of the difference of the magnetic helicity fluxes out of the Sun from the large and small scales.
We study a simple model for the solar dynamo in the framework of the Parker migratory dynamo, with a nonlinear dynamo saturation mechanism based on magnetic helicity conservation arguments. We find a parameter range in which the model demonstrates a cyclic behaviour with properties similar to that of Parker dynamo with the simplest form of algebraic alpha-quenching. We compare the nonlinear current helicity evolution in this model with data for the current helicity evolution obtained during 10 years of observations at the Huairou Solar Station of China. On one hand, our simulated data demonstrate behaviour comparable with the observed phenomenology, provided that a suitable set of governing dynamo parameters is chosen. On the other hand, the observational data are shown to be rich enough to reject some other sets of governing parameters. We conclude that, in spite of the very preliminary state of the observations and the crude nature of the model, the idea of using observational data to constrain our ideas concerning magnetic field generation in the framework of the solar dynamo appears promising.
Observations of the sun suggest that solar activities systematically create north-south hemispheric asymmetries. For instance, the hemisphere in which the sunspot activity is more active tends to switch after the early half of each solar cycle. Svalgaard & Kamide (2013) recently pointed out that the time gaps of polar field reversal between the north and south hemispheres are simply consequences of the asymmetry of sunspot activity. However, the mechanism underlying the asymmetric feature in solar cycle activities is not yet well understood. In this paper, in order to explain the cause of the asymmetry from the theoretical point of view, we investigate the relationship between the dipole- and quadrupole-type components of the magnetic field in the solar cycle using the mean-field theory based on the flux transport dynamo model. As a result, we found that there are two different attractors of the solar cycle, in which either the north or the south polar field is first reversed, and that the flux transport dynamo model well explains the phase-asymmetry of sunspot activity and the polar field reversal without any ad hoc source of asymmetry.
Physical science has changed in the century since Lord Kelvins celebrated essay on Nineteenth Century Clouds over the Dynamical Theory of Heat and Light, but some things are the same. Analogs in what was happening in physics then and what is happening in astronomy today serve to remind us why we can be confident the Virtual Observatory of the twenty-first century will have a rich list of challenges to explore.