Do you want to publish a course? Click here

Nuclear spin relaxation induced by a mechanical resonator

348   0   0.0 ( 0 )
 Added by Christian Degen
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on measurements of the spin lifetime of nuclear spins strongly coupled to a micromechanical cantilever as used in magnetic resonance force microscopy. We find that the rotating-frame correlation time of the statistical nuclear polarization is set by the magneto-mechanical noise originating from the thermal motion of the cantilever. Evidence is based on the effect of three parameters: (1) the magnetic field gradient (the coupling strength), (2) the Rabi frequency of the spins (the transition energy), and (3) the temperature of the low-frequency mechanical modes. Experimental results are compared to relaxation rates calculated from the spectral density of the magneto-mechanical noise.



rate research

Read More

It is a common perception that the transport of a spin current in polycrystalline metal is isotropic and independent of the polarization direction, even though spin current is a tensorlike quantity and its polarization direction is a key variable. We demonstrate surprising anisotropic spin relaxation in mesoscopic polycrystalline Cu channels in nonlocal spin valves. For directions in the substrate plane, the spin-relaxation length is longer for spins parallel to the Cu channel than for spins perpendicular to it, by as much as 9% at 10 K. Spin-orbit effects on the surfaces of Cu channels can account for this anisotropic spin relaxation. The finding suggests novel tunability of spin current, not only by its polarization direction but also by electrostatic gating.
165 - Shi-Hua Ouyang , Chi-Hang Lam , 2010
We propose an approach to cool a mechanical resonator (MR) via quantum interference in a triple quantum dot (TQD) capacitively coupled to the MR. The TQD connected to three electrodes is an electronic analog of a three-level atom in $Lambda$ configuration. The electrons can tunnel from the left electrode into one of the two dots with lower-energy states, but can only tunnel out from the higher-energy state at the third dot to the right electrode. When the two lower-energy states are tuned to be degenerate, an electron in the TQD can be trapped in a superposition of the degenerate states called the dark state. This effect is caused by the destructive quantum interference between tunneling from the two lower-energy states to the higher-energy state. Under this condition, an electron in the dark state readily absorbs an energy quantum from the MR. Repeating this process, the MR can be cooled to its ground state. Moreover, we propose a scheme for verifying the cooling result by measuring the current spectrum of a charge detector adjacent to a double quantum dot coupled to the MR.
The development of hybrid quantum systems is central to the advancement of emerging quantum technologies, including quantum information science and quantum-assisted sensing. The recent demonstration of high quality single-crystal diamond resonators has led to significant interest in a hybrid system consisting of nitrogen-vacancy center spins that interact with the resonant phonon modes of a macroscopic mechanical resonator through crystal strain. However, the nitrogen-vacancy spin-strain interaction has not been well characterized. Here, we demonstrate dynamic, strain-mediated coupling of the mechanical motion of a diamond cantilever to the spin of an embedded nitrogen-vacancy center. Via quantum control of the spin, we quantitatively characterize the axial and transverse strain sensitivities of the nitrogen-vacancy ground state spin. The nitrogen-vacancy center is an atomic scale sensor and we demonstrate spin-based strain imaging with a strain sensitivity of 3 10^(-6) strain Hz^(-1/2). Finally, we show how this spin-resonator system could enable coherent spin-phonon interactions in the quantum regime.
We investigate interactions between electrons and nuclear spins by using the resistance (Rxx) peak which develops near filling factor n = 2/3 as a probe. By temporarily tuning n to a different value, ntemp, with a gate, the Rxx peak is shown to relax quickly on both sides of ntemp = 1. This is due to enhanced nuclear spin relaxation by Skyrmions, and demonstrates the dominant role of nuclear spin in the transport anomaly near n = 2/3. We also observe an additional enhancement in the nuclear spin relaxation around n = 1/2 and 3/2, which suggests a Fermi sea of partially-polarized composite fermions.
Since the advent of atomic force microscopy, mechanical resonators have been used to study a wide variety of phenomena, such as the dynamics of individual electron spins, persistent currents in normal metal rings, and the Casimir force. Key to these experiments is the ability to measure weak forces. Here, we report on force sensing experiments with a sensitivity of 12 zN Hz^(-1/2) at a temperature of 1.2 K using a resonator made of a carbon nanotube. An ultra-sensitive method based on cross-correlated electrical noise measurements, in combination with parametric downconversion, is used to detect the low-amplitude vibrations of the nanotube induced by weak forces. The force sensitivity is quantified by applying a known capacitive force. This detection method also allows us to measure the Brownian vibrations of the nanotube down to cryogenic temperatures. Force sensing with nanotube resonators offers new opportunities for detecting and manipulating individual nuclear spins as well as for magnetometry measurements.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا