No Arabic abstract
We study the behavior with the number of colors (Nc) of the two poles associated to the Lambda(1405) resonance obtained dynamically within the chiral unitary approach. The leading order chiral meson-baryon interaction manifests a nontrivial Nc dependence for SU(3) baryons, which gives a finite attractive interaction in some channels in the large Nc limit. As a consequence, the SU(3) singlet (Kbar N) component of the Lambda(1405) survives in the large Nc limit as a bound state, while the other components dissolve into the continuum. The Nc dependence of the decay widths shows different behavior from the general counting rule for a qqq state, indicating the dynamical origin of the two poles for the Lambda(1405) resonance.
We investigate the photoproduction of Lambda(1405,1/2^-) = Lambda* off the proton target using the effective Lagrangian in the Born approximation. We observed that, depending on the choice of the K* N Lambda* coupling strength, the total cross section becomes 0.1 <~ sigma_Lambda* <~ 0.2 mu b near the threshold and starts to decrease beyond E_gamma ~ 1.6 GeV, and the angular dependence shows a mild enhancement in the forward direction. It turns out that the energy dependence of the total cross section is similar to that shown in the recent LEPS experiment. This suggests that the production mechanism of the Lambda* is dominated by the s-channel contribution.
It appears that there are two resonances with $J^P= 1/2^-$ quantum numbers in the energy region near the $Lambda(1405)$ hyperon. The nature of these states is a topic of current debate. To provide further insight we use Regge phenomenology to access how these two resonances fit the established hyperon spectrum. We find that only one of these resonances is compatible with a three-quark state.
The mass spectrum of the positive parity [56,2^+] baryons is studied in the 1/Nc expansion up to and including O(1/Nc) effects with SU(3) symmetry breaking implemented to first order. A total of eighteen mass relations result, several of which are tested with the available data. The breaking of spin-flavor symmetry is dominated by the hyperfine interactions, while spin-orbit effects are found to be small.
We discuss several aspects of the Lambda(1405) resonance in relation to the recent theoretical developments in chiral dynamics. We derive an effective single-channel KbarK N interaction based on chiral SU(3) coupled-channel approach, emphasizing the important role of the pi Sigma channel and the structure of the Lambda(1405) in Kbar N phenomenology. In order to clarify the structure of the resonance, we study the behavior with the number of colors (Nc) of the poles associated with the Lambda(1405), and argue the physical meaning of the renormalization procedure.
We study the unitarized meson-baryon scattering amplitude at leading order in the strangeness $S=-1$ sector using time-ordered perturbation theory for a manifestly Lorentz-invariant formulation of chiral effective field theory. By solving the coupled-channel integral equations with the full off-shell dependence of the effective potential and applying subtractive renormalization, we analyze the renormalized scattering amplitudes and obtain the two-pole structure of the $Lambda(1405)$ resonance. We also point out the necessity of including higher-order terms.