Determination of Topology Skeleton of Magnetic Fields in a Solar Active Region


Abstract in English

The knowledge of magnetic topology is the key to understand magnetic energy release in astrophysics. Based on observed vector magnetograms, we have determined threedimensional (3D) topology skeleton of the magnetic fields in active region NOAA 10720. The skeleton consists of six 3D magnetic nulls and a network of corresponding spines, fans, and null-null lines. For the first time, we have identified a spiral magnetic null in Suns corona. The magnetic lines of force twisted around the spine of the null, forming a magnetic wreath with excess of free magnetic energy and resembling observed brightening structures at extraultraviolet (EUV) wavebands. We found clear evidence of topology eruptions which are referred to as the catastrophic changes of topology skeleton associated with a coronal mass ejection (CME) and an explosive X-ray flare. These results shed new lights in exploring the structural complexity and its role in explosive magnetic activity. In solar astrophysics and space science, the concept of flux rope has been widely used in modelling explosive magnetic activity, although their observational identity is obscure or, at least, lacking of necessary details. The current work suggests that the magnetic wreath associated with the 3D spiral null is likely an important class of the physical entity of flux ropes.

Download