Do you want to publish a course? Click here

Determination of Topology Skeleton of Magnetic Fields in a Solar Active Region

210   0   0.0 ( 0 )
 Added by Hui Zhao
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The knowledge of magnetic topology is the key to understand magnetic energy release in astrophysics. Based on observed vector magnetograms, we have determined threedimensional (3D) topology skeleton of the magnetic fields in active region NOAA 10720. The skeleton consists of six 3D magnetic nulls and a network of corresponding spines, fans, and null-null lines. For the first time, we have identified a spiral magnetic null in Suns corona. The magnetic lines of force twisted around the spine of the null, forming a magnetic wreath with excess of free magnetic energy and resembling observed brightening structures at extraultraviolet (EUV) wavebands. We found clear evidence of topology eruptions which are referred to as the catastrophic changes of topology skeleton associated with a coronal mass ejection (CME) and an explosive X-ray flare. These results shed new lights in exploring the structural complexity and its role in explosive magnetic activity. In solar astrophysics and space science, the concept of flux rope has been widely used in modelling explosive magnetic activity, although their observational identity is obscure or, at least, lacking of necessary details. The current work suggests that the magnetic wreath associated with the 3D spiral null is likely an important class of the physical entity of flux ropes.



rate research

Read More

Context. A proper estimate of the chromospheric magnetic fields is believed to improve modelling of both active region and coronal mass ejection evolution. Aims. We investigate the similarity between the chromospheric magnetic field inferred from observations and the field obtained from a magnetohydrostatic (MHS) extrapolation. Methods. Based Fe i 6173 {AA} and Ca ii 8542 {AA} observations of NOAA active region 12723, we employed the spatially-regularised weak-field approximation (WFA) to derive the vector magnetic field in the chromosphere from Ca ii, as well as non-LTE
126 - Hongqi Zhang 2013
We compute for the first time magnetic helicity and energy spectra of the solar active region NOAA 11158 during 11-15 February 2011 at 20^o southern heliographic latitude using observational photospheric vector magnetograms. We adopt the isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field. The sign of magnetic helicity turns out to be predominantly positive at all wavenumbers. This sign is consistent with what is theoretically expected for the southern hemisphere. The magnetic helicity normalized to its theoretical maximum value, here referred to as relative helicity, is around 4% and strongest at intermediate wavenumbers of k ~ 0.4 Mm^{-1}, corresponding to a scale of 2pi/k ~ 16 Mm. The same sign and a similar value are also found for the relative current helicity evaluated in real space based on the vertical components of magnetic field and current density. The modulus of the magnetic helicity spectrum shows a k^{-11/3} power law at large wavenumbers, which implies a k^{-5/3} spectrum for the modulus of the current helicity. A k^{-5/3} spectrum is also obtained for the magnetic energy. The energy spectra evaluated separately from the horizontal and vertical fields agree for wavenumbers below 3 Mm^{-1}, corresponding to scales above 2 Mm. This gives some justification to our assumption of isotropy and places limits resulting from possible instrumental artefacts at small scales.
The characteristic electron densities, temperatures, and thermal distributions of 1MK active region loops are now fairly well established, but their coronal magnetic field strengths remain undetermined. Here we present measurements from a sample of coronal loops observed by the Extreme-ultraviolet Imaging Spectrometer (EIS) on Hinode. We use a recently developed diagnostic technique that involves atomic radiation modeling of the contribution of a magnetically induced transition (MIT) to the Fe X 257.262A spectral line intensity. We find coronal magnetic field strengths in the range of 60--150G. We discuss some aspects of these new results in the context of previous measurements using different spectropolarimetric techniques, and their influence on the derived Alfv{e}n speeds and plasma $beta$ in coronal loops.
We aim to investigate the temperature enhancements and formation heights of impulsive heating phenomena in solar active-regions such as Ellerman bombs (EBs), ultraviolet bursts (UVBs), and flaring active-region fibrils (FAFs) using interferometric observations in the millimeter (mm) continuum provided by the Atacama Large Millimeter/submillimeter Array (ALMA). We examined 3 mm signatures of heating events identified in Solar Dynamics Observatory (SDO) observations of an active region and compared the results with synthetic spectra from a 3D radiative magnetohydrodynamic simulation. We estimated the contribution from the corona to the mm brightness using differential emission measure analysis. We report the null detection of EBs in the 3 mm continuum at $sim1.2$ spatial resolution, which is evidence that they are sub-canopy events that do not significantly contribute to heating the upper chromosphere. In contrast, we find the active region to be populated with multiple compact, bright, flickering mm bursts -- reminiscent of UVBs. The high brightness temperatures of up to $sim14200$ K in some events have a significant contribution (up to $sim$7%) from the corona. We also detect FAF-like events in the 3 mm continuum that show rapid motions of $>10000,$K plasma launched with high plane-of-sky velocities ($37-340rm,km,s^{-1}$) from bright kernels. The mm FAFs are the brightest class of warm canopy fibrils that connect magnetic regions of opposite polarities. The simulation confirms that ALMA should be able to detect the mm counterparts of UVBs and small flares and thus provide a complementary diagnostic for localized heating in the solar chromosphere.
212 - X. Cheng , M. D. Ding , J. Zhang 2014
In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1--0.6 km s$^{-1}$. The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field structures further reveal the locations of the reconnection to be in a bald-patch region and in a hyperbolic flux tube. About two hours before the eruption, indications for a second MFR in the form of an S-shaped hot channel are seen. It lies above the original MFR that continuously exists and includes a filament. The whole structure thus makes up a stable double-decker MFR system for hours prior to the eruption. Eventually, after entering the domain of instability, the high-lying MFR impulsively erupts to generate a fast coronal mass ejection and X-class flare; while the low-lying MFR remains behind and continuously maintains the sigmoidicity of the active region.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا