Do you want to publish a course? Click here

Sideband cooling and coherent dynamics in a microchip multi-segmented ion trap

133   0   0.0 ( 0 )
 Added by Stephan Schulz
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Miniaturized ion trap arrays with many trap segments present a promising architecture for scalable quantum information processing. The miniaturization of segmented linear Paul traps allows partitioning the microtrap in different storage and processing zones. The individual position control of many ions - each of them carrying qubit information in its long-lived electronic levels - by the external trap control voltages is important for the implementation of next generation large-scale quantum algorithms. We present a novel scalable microchip multi-segmented ion trap with two different adjacent zones, one for the storage and another dedicated for the processing of quantum information using single ions and linear ion crystals: A pair of radio-frequency driven electrodes and 62 independently controlled DC electrodes allows shuttling of single ions or linear ion crystals with numerically designed axial potentials at axial and radial trap frequencies of a few MHz. We characterize and optimize the microtrap using sideband spectroscopy on the narrow S1/2 <-> D5/2 qubit transition of the 40Ca+ ion, demonstrate coherent single qubit Rabi rotations and optical cooling methods. We determine the heating rate using sideband cooling measurements to the vibrational ground state which is necessary for subsequent two-qubit quantum logic operations. The applicability for scalable quantum information processing is proven.



rate research

Read More

Microfabricated ion traps are a major advancement towards scalable quantum computing with trapped ions. The development of more versatile ion-trap designs, in which tailored arrays of ions are positioned in two dimensions above a microfabricated surface, would lead to applications in fields as varied as quantum simulation, metrology and atom-ion interactions. Current surface ion traps often have low trap depths and high heating rates, due to the size of the voltages that can be applied to them, limiting the fidelity of quantum gates. Here we report on a fabrication process that allows for the application of very high voltages to microfabricated devices in general and use this advance to fabricate a 2D ion trap lattice on a microchip. Our microfabricated architecture allows for reliable trapping of 2D ion lattices, long ion lifetimes, rudimentary shuttling between lattice sites and the ability to deterministically introduce defects into the ion lattice.
We report a demonstration and quantitative characterization of one-dimensional cavity cooling of a single trapped 88Sr+ ion in the resolved sideband regime. We measure the spectrum of cavity transitions, the rates of cavity heating and cooling, and the steady-state cooling limit. The cavity cooling dynamics and cooling limit of 22.5(3) motional quanta, limited by the moderate coupling between the ion and the cavity, are consistent with a simple model [Phys. Rev. A 64, 033405] without any free parameters, validating the rate equation model for cavity cooling.
Trapped ion in the Lamb-Dicke regime with the Lamb-Dicke parameter $etall1$ can be cooled down to its motional ground state using sideband cooling. Standard sideband cooling works in the weak sideband coupling limit, where the sideband coupling strength is small compared to the natural linewidth $gamma$ of the internal excited state, with a cooling rate much less than $gamma$. Here we consider cooling schemes in the strong sideband coupling regime, where the sideband coupling strength is comparable or even greater than $gamma$. We derive analytic expressions for the cooling rate and the average occupation of the motional steady state in this regime, based on which we show that one can reach a cooling rate which is proportional to $gamma$, while at the same time the steady state occupation increases by a correction term proportional to $eta^{2}$ compared to the weak sideband coupling limit. We demonstrate with numerical simulations that our analytic expressions faithfully recover the exact dynamics in the strong sideband coupling regime.
We show how entangled qubits can be encoded as entangled coherent states of two-dimensional centre-of-mass vibrational motion for two ions in an ion trap. The entangled qubit state is equivalent to the canonical Bell state, and we introduce a proposal for entanglement transfer from the two vibrational modes to the electronic states of the two ions in order for the Bell state to be detected by resonance fluorescence shelving methods.
We demonstrate the implementation of a spin qubit with a single Ca ion in a micro ion trap. The qubit is encoded in the Zeeman ground state levels mJ=+1/2 and mJ=-1/2 of the S1/2 state of the ion. We show sideband cooling close to the vibrational ground state and demonstrate the initialization and readout of the qubit levels with 99.5% efficiency. We employ a Raman transition close to the S1/2 - P1/2 resonance for coherent manipulation of the qubit. We observe single qubit rotations with 96% fidelity and gate times below 5mus. Rabi oscillations on the blue motional sideband are used to extract the phonon number distribution. The dynamics of this distribution is analyzed to deduce the trap-induced heating rate of 0.3(1) phonons/ms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا