Do you want to publish a course? Click here

Timing the Nearby Isolated Neutron Star RX J1856.5-3754

116   0   0.0 ( 0 )
 Added by Marten van Kerkwijk
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

RX J1856.5-3754 is the X-ray brightest among the nearby isolated neutron stars. Its X-ray spectrum is thermal, and is reproduced remarkably well by a black-body, but its interpretation has remained puzzling. One reason is that the source did not exhibit pulsations, and hence a magnetic field strength--vital input to atmosphere models--could not be estimated. Recently, however, very weak pulsations were discovered. Here, we analyze these in detail, using all available data from the XMM-Newton and Chandra X-ray observatories. From frequency measurements, we set a 2-sigma upper limit to the frequency derivative of dot u<1.3e-14 Hz/s. Trying possible phase-connected timing solutions, we find that one solution is far more likely than the others, and we infer a most probable value of dot u=(-5.98+/-0.14)e-16 Hz/s. The inferred magnetic field strength is 1.5e13 G, comparable to what was found for similar neutron stars. From models, the field seems too strong to be consistent with the absence of spectral features for non-condensed atmospheres. It is sufficiently strong, however, that the surface could be condensed, but only if it is consists of heavy elements like iron. Our measurements imply a characteristic age of about 4 Myr. This is longer than the cooling and kinematic ages, as was found for similar objects, but at almost a factor ten, the discrepancy is more extreme. A puzzle raised by our measurement is that the implied rotational energy loss rate of about 3e30 erg/s is orders of magnitude smaller than what was inferred from the H-alpha nebula surrounding the source.



rate research

Read More

125 - R. P. Mignani 2012
X-ray observations unveiled various types of radio-silent Isolated Neutron Stars (INSs), phenomenologically very diverse, e.g. the Myr old X-ray Dim INS (XDINSs) and the kyr old magnetars. Although their phenomenology is much diverse, the similar periods (P=2--10 s) and magnetic fields (~10^{14} G) suggest that XDINSs are evolved magnetars, possibly born from similar populations of supermassive stars. One way to test this hypothesis is to identify their parental star clusters by extrapolating backward the neutron star velocity vector in the Galactic potential. By using the information on the age and space velocity of the XDINS RX J1856.5-3754, we computed backwards its orbit in the Galactic potential and searched for its parental stellar cluster by means of a closest approach criterion. We found a very likely association with the Upper Scorpius OB association, for a neutron star age of 0.42+/-0.08 Myr, a radial velocity V_r^NS =67+/- 13$ km s^{-1}, and a present-time parallactic distance d_pi^NS = 123^{+11}_{-15} pc. Our result confirms that the true neutron star age is much lower than the spin-down age (tau_{sd}=3.8 Myrs), and is in good agreement with the cooling age, as computed within standard cooling scenarios. The mismatch between the spin-down and the dynamical/cooling age would require either an anomalously large breaking index (n~20) or a decaying magnetic field with initial value B_0 ~ 10^{14} G. Unfortunately, owing to the uncertainty on the age of the Upper Scorpius OB association and the masses of its members we cannot yet draw firm conclusions on the estimated mass of the RX J1856.5-3754 progenitor.
The Magnificent Seven (M7) are a group of radio-quiet Isolated Neutron Stars (INSs) discovered in the soft X-rays through their purely thermal surface emission. Owing to the large inferred magnetic fields ($Bapprox 10^{13}$ G), radiation from these sources is expected to be substantially polarised, independently on the mechanism actually responsible for the thermal emission. A large observed polarisation degree is, however, expected only if quantum-electrodynamics (QED) polarisation effects are present in the magnetised vacuum around the star. The detection of a strongly linearly polarised signal would therefore provide the first observational evidence of QED effects in the strong-field regime. While polarisation measurements in the soft X-rays are not feasible yet, optical polarisation measurements are within reach also for quite faint targets, like the M7 which have optical counterparts with magnitudes $approx 26$--$28$. Here, we report on the measurement of optical linear polarisation for the prototype, and brightest member, of the class, RX, J1856.5$-$3754 ($Vsim 25.5$), the first ever for one of the M7, obtained with the Very Large Telescope. We measured a polarisation degree $mathrm{P.D.} =16.43% pm5.26%$ and a polarisation position angle $mathrm{P.A.}=145fdg39pm9fdg44$, computed east of the North Celestial Meridian. The $mathrm{P.D.}$ that we derive is large enough to support the presence of vacuum birefringence, as predicted by QED.
We report on submillimetre bolometer observations of the isolated neutron star RX J1856.5--3754 using the LABOCA bolometer array on the Atacama Pathfinder Experiment (APEX) Telescope. No cold dust continuum emission peak at the position of RX J1856.5--3754 was detected. The 3 sigma flux density upper limit of 5 mJy translates into a cold dust mass limit of a few earth masses. We use the new submillimetre limit, together with a previously obtained H-band limit, to constrain the presence of a gaseous, circumpulsar disc. Adopting a simple irradiated-disc model, we obtain a mass accretion limit of dM/dt less than 10^{14} g/s, and a maximum outer disc radius of around 10^{14} cm. By examining the projected proper motion of RX J1856.5--3754, we speculate about a possible encounter of the neutron star with a dense fragment of the CrA molecular cloud a few thousand years ago.
71 - X.L. Zhang 2003
Within the realms of the possibility of solid quark matter, we fitted the 500ks Chandra LETG/HRC data for RX J1856.5-3754 with a phenomenological spectral model, and found that electric conductivity of quark matter on the stellar surface is about > 1.2 x 10^{18} s^{-1}.
112 - Silvia Zane 2002
We present a combined analysis of XMM-Newton, Chandra and Rosat observations of the isolated neutron star RXJ0720.4-3125, spanning a total period of sim 7 years. We develop a maximum likelihood periodogramme for our analysis based on the Delta C-statistic and the maximum likelihood method, which are appropriate for the treatment of sparse event lists. Our results have been checked a posteriori by folding a further BeppoSAX dataset with the period predicted at the time of that observation: the phase is found to be consistent. The study of the spin history and the measure of the spin-down rate is of extreme importance in discriminating between the possible mechanisms suggested for the nature of the X-ray emission. The value of dot P, here measured for the first time, is approx 10^{-14} s/s. This value can not be explained in terms of torque from a fossil disk. When interpreted in terms of dipolar losses, it gives a magnetic field of B approx 10^{13} G, making also implausible that the source is accreting from the underdense surroundings. On the other hand, we also find unlikely that the field decayed from a much larger value (Bapprox 10^{15} G, as expected for a magnetar powered by dissipation of a superstrong field) since this scenario predicts a source age of approx 10^4 yrs, too young to match the observed X-ray luminosity. The observed properties are more compatible with a scenario in which the source is approx 10^6 yrs old, and its magnetic field has not changed substantially over the lifetime.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا