No Arabic abstract
We present the properties of active galactic nuclei (AGN) selected by optical variability in the Subaru/XMM-Newton Deep Field (SXDF). Based on the locations of variable components and light curves, 211 optically variable AGN were reliably selected. We made three AGN samples; X-ray detected optically non-variable AGN (XA), X-ray detected optically variable AGN (XVA), and X-ray undetected optically variable AGN (VA). In the VA sample, we found a bimodal distribution of the ratio between the variable component flux and the host flux. One of these two components in the distribution, a class of AGN with a faint variable component $i_{rm{vari}}sim25$ mag in bright host galaxies $isim21$ mag, is not seen in the XVA sample. These AGN are expected to have low Eddington ratios if we naively consider a correlation between bulge luminosity and black hole mass. These galaxies have photometric redshifts $z_{rm{photo}}sim0.5$ and we infer that they are low-luminosity AGN with radiatively inefficient accretion flows (RIAFs). The properties of the XVA and VA objects and the differences from those of the XA objects can be explained within the unified scheme for AGN. Optical variability selection for AGN is an independent method and could provide a complementary AGN sample which even deep X-ray surveys have not found.
We present multi-waveband optical imaging data obtained from observations of the Subaru/XMM-Newton Deep Survey (SXDS). The survey field, centered at R.A.=02:18:00, decl.=-05:00:00, has been the focus of a wide range of multi-wavelength observing programs spanning from X-ray to radio wavelengths. A large part of the optical imaging observations are carried out with Suprime-Cam on Subaru Telescope at Mauna Kea in the course of Subaru Telescope Observatory Projects. This paper describes our optical observations, data reduction and analysis procedures employed, and the characteristics of the data products. A total area of 1.22 sqdeg is covered in five contiguous sub-fields, each of which corresponds to a single Suprime-Cam field of view (34x27), in five broad-band filters B, V, Rc, i, z to the depths of B=28.4, V=27.8, Rc=27.7, i=27.7 and z=26.6 (AB, 3-sigma, 2-arcsec aperture). The data are reduced and compiled into five multi-waveband photometric catalogs, separately for each Suprime-Cam pointing. The i-band catalogs contain about 900,000 objects, making the SXDS catalogs one of the largest multi-waveband catalogs in corresponding depth and area coverage. The SXDS catalogs can be used for an extensive range of astronomical applications such as the number density of the Galactic halo stars to the large scale structures at the distant universe. The number counts of galaxies are derived and compared with those of existing deep extragalactic surveys. The optical data, the source catalogs, and configuration files used to create the catalogs are publicly available via the SXDS web page (http://www.naoj.org/Science/SubaruProject/SXDS/index.html)
We present the X-ray source catalog in the Subaru/XMM-Newton deep survey. A continuous area of 1.14 deg^2 centered at R.A. = 02h18m and Dec. = -05d is mapped by seven pointings with XMM-Newton covering the 0.2-10 keV band. From the combined images of the EPIC pn and MOS cameras, we detect 866, 1114, 645, and 136 sources with sensitivity limits of 6x10^{-16}, 8x10^{-16}, 3x10^{-15}, and 5x10^{-15} erg cm^{-2} s^{-1} in the 0.5-2, 0.5-4.5, 2-10, and 4.5-10 keV bands, respectively, with detection likelihood >= 7 (corresponding to a confidence level of 99.91%). The catalog consists of 1245 sources in total including 32 extended-source candidates. The averaged log N-log S relations are in good agreement with previous results, bridging the flux range between Chandra deep surveys and brighter surveys. The log N-log S relations show significant spatial variation among pointings on a scale of 0.2 deg^2. Analyzing the auto correlation function, we detect significant clustering signals from the 0.5-2 keV band sample, which can be fit with a power law form (theta/theta_c)^{-0.8} with a correlation length of theta_c=5.9^{+1.0}_{-0.9} arcsec when the integral constraint term is included. In the 2-10 keV band, however, the clustering is not significant with a 90% upper limit of theta_c < 1.5 arcsec.
We present our survey for optically faint variable objects using multi-epoch (8-10 epochs over 2-4 years) $i$-band imaging data obtained with Subaru Suprime-Cam over 0.918 deg$^2$ in the Subaru/XMM-Newton Deep Field (SXDF). We found 1040 optically variable objects by image subtraction for all the combinations of images at different epochs. This is the first statistical sample of variable objects at depths achieved with 8-10m class telescopes or HST. The detection limit for variable components is $i_{rm{vari}}sim25.5$ mag. These variable objects were classified into variable stars, supernovae (SNe), and active galactic nuclei (AGN), based on the optical morphologies, magnitudes, colors, and optical-mid-infrared colors of the host objects, spatial offsets of variable components from the host objects, and light curves. Detection completeness was examined by simulating light curves for periodic and irregular variability. We detected optical variability for $36pm2%$ ($51pm3%$ for a bright sample with $i<24.4$ mag) of X-ray sources in the field. Number densities of variable obejcts as functions of time intervals $Delta{t}$ and variable component magnitudes $i_{rm{vari}}$ are obtained. Number densities of variable stars, SNe, and AGN are 120, 489, and 579 objects deg$^{-2}$, respectively. Bimodal distributions of variable stars in the color-magnitude diagrams indicate that the variable star sample consists of bright ($Vsim22$ mag) blue variable stars of the halo population and faint ($Vsim23.5$ mag) red variable stars of the disk population. There are a few candidates of RR Lyrae providing a possible number density of $sim10^{-2}$ kpc$^{-3}$ at a distance of $>150$ kpc from the Galactic center.
We report the multi-wavelength identification of the X-ray sources found in the Subaru-XMM-Newton Deep Survey (SXDS) using deep imaging data covering the wavelength range between the far-UV to the mid-IR. We select a primary counterpart of each X-ray source by applying the likelihood ratio method to R-band, 3.6micron, near-UV, and 24micron source catalogs as well as matching catalogs of AGN candidates selected in 1.4GHz radio and i-band variability surveys. Once candidates of Galactic stars, ultra-luminous X-ray sources in a nearby galaxy, and clusters of galaxies are removed there are 896 AGN candidates in the sample. We conduct spectroscopic observations of the primary counterparts with multi-object spectrographs in the optical and NIR; 65% of the X-ray AGN candidates are spectroscopically-identified. For the remaining X-ray AGN candidates, we evaluate their photometric redshift with photometric data in 15 bands. Utilising the multi-wavelength photometric data of the large sample of X-ray selected AGNs, we evaluate the stellar masses, M*, of the host galaxies of the narrow-line AGNs. The distribution of the stellar mass is remarkably constant from z=0.1 to 4.0. The relation between M* and 2--10 keV luminosity can be explained with strong cosmological evolution of the relationship between the black hole mass and M*. We also evaluate the scatter of the UV-MIR spectral energy distribution (SED) of the X-ray AGNs as a function of X-ray luminosity and absorption to the nucleus. The scatter is compared with galaxies which have redshift and stellar mass distribution matched with the X-ray AGN. The UV-NIR SEDs of obscured X-ray AGNs are similar to those of the galaxies in the matched sample. In the NIR-MIR range, the median SEDs of X-ray AGNs are redder, but the scatter of the SEDs of the X-ray AGN broadly overlaps that of the galaxies in the matched sample.
We study the comoving space density of X-ray-selected luminous active galactic nuclei (AGNs) and the obscured AGN fraction at high redshifts ($3 < z < 5$) in the Subaru/{it XMM-Newton} Deep Survey (SXDS) field. From an X-ray source catalog with high completeness of optical identification thanks to deep optical images, we select a sample of 30 AGNs at $z > 3$ with intrinsic (de-absorbed and rest-frame 2--10 keV) luminosities of $L_{rm X} = 10^{44-45}$ erg s$^{-1}$ detected in the 0.5--2 keV band, consisting of 20 and 10 objects with spectroscopic and photometric redshifts, respectively. Utilizing the $1/V_{rm max}$ method, we confirm that the comoving space density of luminous AGNs decreases with redshift above $z > 3$. When combined with the {it Chandra}-COSMOS result of Civano et al. (2011), the density decline of AGNs with $L_{rm X} = 10^{44-45}$ erg s$^{-1}$ is well represented by a power law of $(1 + z)^{-6.2 pm 0.9}$. We also determine the fraction of X-ray obscured AGNs with $N_{rm H} > 10^{22}$ cm$^{-2}$ in the Compton-thin population to be 0.54$^{+0.17}_{-0.19}$, by carefully taking into account observational biases including the effects of photon statistics for each source. This result is consistent with an independent determination of the type-2 AGN fraction based on optical properties, for which the fraction is found to be 0.59$pm$0.09. Comparing our result with that obtained in the local Universe, we conclude that the obscured fraction of luminous AGNs increases significantly from $z=0$ to $z>3$ by a factor of 2.5$pm$1.1.