Bootes II ReBooted: An MMT/MegaCam Study of An Ultra-Faint Milky Way Satellite


Abstract in English

[abridged] We present MMT/Megacam imaging in Sloan $g$ and $r$ of the extremely low luminosity Bootes II Milky Way companion. We use a bootstrap approach to perform robust measurements of, and uncertainties on, Bootes IIs distance, luminosity, size, and morphology. We show that Bootes IIs stellar population is old and metal-poor ([Fe/H] $lta$ -2). Assuming a stellar population like that of M92, Bootes II is at a distance of 42 $pm$ 2 kpc, closer than the initial published estimate of 60 $pm$ 10 kpc. This distance revision, combined with a more robust measurement of Bootes IIs structure with a Plummer model (exponential model) results in a more compact half-light size of $r_hsimeq 36 (33) pm 9 (10)$ pc and lower luminosity of $M_Vsimeq-2.4 (-2.2) pm 0.7 (0.7)$ mag. This revised size and luminosity move Bootes II into a region of size-luminosity space not previously known to be occupied by old stellar populations, but also occupied by the recently discovered Milky Way satellites Willman 1 and SEGUE 1. We show that the apparently distorted morphology of Bootes II is not statistically significant given the present data. We use a tidal argument to support a scenario where Bootes II is a dwarf galaxy (dark matter dominated) rather than a globular cluster (not dark matter dominated). However, we can not rule out that Bootes II is a star cluster on the verge of disruption, such as Palomar 5.

Download