Extended quadratic algebra and a model of the equivariant cohomology ring of flag varieties


Abstract in English

For the root system of type $A$ we introduce and study a certain extension of the quadratic algebra invented by S. Fomin and the first author, to construct a model for the equivariant cohomology ring of the corresponding flag variety. As an application of our construction we describe a generalization of the equivariant Pieri rule for double Schubert polynomials. For a general finite Coxeter system we construct an extension of the corresponding Nichols-Woronowicz algebra. In the case of finite crystallographic Coxeter systems we present a construction of extended Nichols-Woronowicz algebra model for the equivariant cohomology of the corresponding flag variety.

Download