We provide measurements of the Ba isotopic fractions for five metal-poor stars derived with an LTE analysis using 1D model stellar atmospheres. We use high resolution (Requiv{lambda}/Delta{lambda}=90000-95000), very high signal-to-noise (S/N>500) spectra to determine the fraction of odd Ba isotopes (fodd) by measuring subtle asymmetries in the profile of the Ba ii line at 4554 {AA}. We also use two different macroturbulent broadening techniques, Gaussian and radial-tangential, to model the Fe lines of each star, and propagate each technique to model macroturbulent broadening in the Ba 4554 {AA} line. We conduct a 1D non-LTE (NLTE) treatment of the Fe lines in the red giant HD122563 and the subgiant HD140283 in an attempt to improve the fitting. We determine [Ba/Eu] ratios for the two giants in our study, HD122563 and HD88609, which can also be used to determine the relative contribution of the s- and r-processes to heavy-element nucleosynthesis, for comparison with fodd. We find fodd for HD122563, HD88609 and HD84937, BD+26circ3578 and BD-04circ3208 to be -0.12pm0.07, -0.02pm0.09, and -0.05pm0.11, 0.08pm0.08 and 0.18pm0.08 respectively. This means that all stars examined here show isotopic fractions more compatible with an s-process dominated composition. The [Ba/Eu] ratios in HD122563 and HD88609 are found to be -0.20pm0.15 and -0.47pm0.15 respectively, which indicate instead an r-process signature. We report a better statistical fit to the majority of Fe profiles in each star when employing a radial-tangential broadening technique during our 1D LTE investigation. We have shown that, from a statistical point of view, one must consider using a radial-tangential broadening technique rather than a Gaussian one to model Fe line macroturbulences when working in 1D. No improvement to Fe line fitting is seen when employing a NLTE treatment.
Very high-quality spectra of 24 metal-poor halo dwarfs and subgiants have been acquired with ESOs VLT/UVES for the purpose of determining Li isotopic abundances. The derived 1D, non-LTE 7Li abundances from the LiI 670.8nm line reveal a pronounced dependence on metallicity but with negligible scatter around this trend. Very good agreement is found between the abundances from the LiI 670.8nm line and the LiI 610.4nm line. The estimated primordial 7Li abundance is $7Li/H = 1.1-1.5 x 10^-10, which is a factor of three to four lower than predicted from standard Big Bang nucleosynthesis with the baryon density inferred from the cosmic microwave background. Interestingly, 6Li is detected in nine of our 24 stars at the >2sigma significance level. Our observations suggest the existence of a 6Li plateau at the level of log 6Li = 0.8; however, taking into account predictions for 6Li destruction during the pre-main sequence evolution tilts the plateau such that the 6Li abundances apparently increase with metallicity. Our most noteworthy result is the detection of 6Li in the very metal-poor star LP815-43. Such a high 6Li abundance during these early Galactic epochs is very difficult to achieve by Galactic cosmic ray spallation and alpha-fusion reactions. It is concluded that both Li isotopes have a pre-Galactic origin. Possible 6Li production channels include proto-galactic shocks and late-decaying or annihilating supersymmetric particles during the era of Big Bang nucleosynthesis. The presence of 6Li limits the possible degree of stellar 7Li depletion and thus sharpens the discrepancy with standard Big Bang nucleosynthesis.
We have observed the B I 2497 A line to derive the boron abundances of two very metal-poor stars selected to help in tracing the origin and evolution of this element in the early Galaxy: BD +23 3130 and HD 84937. The observations were conducted using the Goddard High Resolution Spectrograph on board the Hubble Space Telescope. A very detailed abundance analysis via spectral synthesis has been carried out for these two stars, as well as for two other metal-poor objects with published spectra, using both Kurucz and OSMARCS model photospheres, and taking into account consistently the NLTE effects on the line formation. We have also re-assessed all published boron abundances of old disk and halo unevolved stars. Our analysis shows that the combination of high effective temperature (Teff > 6000 K, for which boron is mainly ionized) and low metallicity ([Fe/H]<-1) makes it difficult to obtain accurate estimates of boron abundances from the B I 2497 A line. This is the case of HD 84937 and three other published objects (including two stars with [Fe/H] ~ -3), for which only upper limits can be established. BD +23 3130, with [Fe/H] ~ -2.9 and logN(B)_NLTE=0.05+/-0.30, appears then as the most metal-poor star for which a firm measurement of the boron abundance presently exists. The evolution of the boron abundance with metallicity that emerges from the seven remaining stars with Teff < 6000 K and [Fe/H]<-1, for which beryllium abundances were derived using the same stellar parameters, shows a linear increase with a slope ~ 1. Furthermore, the B/Be ratio found is constant at a value ~ 20 for stars in the range -3<[Fe/H]<-1. These results point to spallation reactions of ambient protons and alpha particles with energetic particles enriched in CNO as the origin of boron and beryllium in halo stars.
We investigate the debated sulphur discrepancy found among metal-poor stars of the Galactic halo with [Fe/H] < -2. This discrepancy stems in part from the use of two different sets of sulphur lines, the very weak triplet at 8694-95 A and the stronger triplet lines at 9212 - 9237 A. For three representative cases of metal-poor dwarf, turnoff and subgiant stars, we argue that the abundances from the 8694-95 lines have been overestimated which has led to a continually rising trend of [S/Fe] as metallicity decreases. Given that the near-IR region is subject to CCD fringing, these weak lines become excessively difficult to measure accurately in the metallicity regime of [Fe/H] < -2. Based on homogeneously determined spectroscopic stellar parameters, we also present updated [S/Fe] ratios from the 9212-9237 lines which suggest a plateau-like behaviour similar to that seen for other alpha elements.
We investigate hydrodynamical and nucleosynthetic properties of the jet-induced explosion of a population III $40M_odot$ star and compare the abundance patterns of the yields with those of the metal-poor stars. We conclude that (1) the ejection of Fe-peak products and the fallback of unprocessed materials can account for the abundance patterns of the extremely metal-poor (EMP) stars and that (2) the jet-induced explosion with different energy deposition rates can explain the diversity of the abundance patterns of the metal-poor stars. Furthermore, the abundance distribution after the explosion and the angular dependence of the yield are shown for the models with high and low energy deposition rates $dot{E}_{rm dep}=120times10^{51} {rm ergs s^{-1}}$ and $1.5times10^{51} {rm ergs s^{-1}}$. We also find that the peculiar abundance pattern of a Si-deficient metal-poor star HE 1424--0241 can be reproduced by the angle-delimited yield for $theta=30^circ-35^circ$ of the model with $dot{E}_{rm dep}=120times10^{51} {rm ergs s^{-1}}$.
Log in to be able to interact and post comments
comments
Fetching comments
Sorry, something went wrong while fetching comments!
Ian U. Roederer
,James E. Lawler
,Christopher Sneden
.
(2007)
.
"Europium, Samarium, and Neodymium Isotopic Fractions in Metal-Poor Stars"
.
Ian Roederer
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا