Do you want to publish a course? Click here

Tuning competing orders in La2-xSrxCuO4 cuprate superconductors by the application of an external magnetic field

176   0   0.0 ( 0 )
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the results of a combined muon spin rotation and neutron scattering study on La2-xSrxCuO4 in the vicinity of the so-called 1/8-anomaly. Application of a magnetic field drives the system towards a magnetically ordered spin-density-wave state, which is fully developed at 1/8 doping. The results are discussed in terms of competition between antiferromagnetic and superconducting order parameters.



rate research

Read More

135 - L. Chaix , E. W. Huang , S. Gerber 2018
We investigated the doping dependence of magnetic excitations in the lightly doped cuprate La2-xSrxCuO4 via combined studies of resonant inelastic x-ray scattering (RIXS) at the Cu L3-edge and theoretical calculations. With increasing doping, the magnon dispersion is found to be essentially unchanged, but the spectral width broadens and the spectral weight varies differently at different momenta. Near the Brillouin zone center, we directly observe bimagnon excitations which possess the same energy scale and doping dependence as previously observed by Raman spectroscopy. They disperse weakly in energy-momentum space, and are consistent with a bimagnon dispersion that is renormalized by the magnon-magnon interaction at the zone center.
We present a volume-sensitive high-energy x-ray diffraction study of the underdoped cuprate high temperature superconductor La2-xSrxCuO4 (x = 0.12, Tc=27 K) in applied magnetic field. Bulk short-range charge stripe order with propagation vector q_ch = (0.231, 0, 0.5) is demonstrated to exist below T_ch = 85(10) K and shown to compete with superconductivity. We argue that bulk charge ordering arises from fluctuating stripes that become pinned near boundaries between orthorhombic twin domains.
Using angle-resolved photoemission spectroscopy it is revealed that in the vicinity of optimal doping the electronic structure of La2-xSrxCuO4 cuprate undergoes an electronic reconstruction associated with a wave vector q_a=(pi, 0). The reconstructed Fermi surface and folded band are distinct to the shadow bands observed in BSCCO cuprates and in underdoped La2-xSrxCuO4 with x <= 0.12, which shift the primary band along the zone diagonal direction. Furthermore the folded bands appear only with q_a=(pi, 0) vector, but not with q_b= (0, pi). We demonstrate that the absence of q_b reconstruction is not due to the matrix-element effects in the photoemission process, which indicates the four-fold symmetry is broken in the system.
We use inelastic neutron scattering to measure the magnetic excitations in the underdoped superconductor La2-xSrxCuO4 (x=0.085, Tc=22 K) over energy and temperatures ranges 5 < E < 200 meV and 5 < T < 300 K respectively. At high temperature (T = 300 K), we observe strongly damped excitations with a characteristic energy scale of approximately 50 meV. As the temperature is lowered to T = 30 K, and we move into the pseudogap state, the magnetic excitations become highly structured in energy and momentum below about 60 meV. This change appears to be associated with the development of the pseudogap in the electronic excitations.
The influence of a uniform external magnetic field on the dynamical spin response of cuprate superconductors in the superconducting state is studied based on the kinetic energy driven superconducting mechanism. It is shown that the magnetic scattering around low and intermediate energies is dramatically changed with a modest external magnetic field. With increasing the external magnetic field, although the incommensurate magnetic scattering from both low and high energies is rather robust, the commensurate magnetic resonance scattering peak is broadened. The part of the spin excitation dispersion seems to be an hourglass-like dispersion, which breaks down at the heavily low energy regime. The theory also predicts that the commensurate resonance scattering at zero external magnetic field is induced into the incommensurate resonance scattering by applying an external magnetic field large enough.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا