Statistics of geodesics in large quadrangulations


Abstract in English

We study the statistical properties of geodesics, i.e. paths of minimal length, in large random planar quadrangulations. We extend Schaeffers well-labeled tree bijection to the case of quadrangulations with a marked geodesic, leading to the notion of spine trees, amenable to a direct enumeration. We obtain the generating functions for quadrangulations with a marked geodesic of fixed length, as well as with a set of confluent geodesics, i.e. a collection of non-intersecting minimal paths connecting two given points. In the limit of quadrangulations with a large area n, we find in particular an average number 3*2^i of geodesics between two fixed points at distance i>>1 from each other. We show that, for generic endpoints, two confluent geodesics remain close to each other and have an extensive number of contacts. This property fails for a few exceptional endpoints which can be linked by truly distinct geodesics. Results are presented both in the case of finite length i and in the scaling limit i ~ n^(1/4). In particular, we give the scaling distribution of the exceptional points.

Download