Do you want to publish a course? Click here

A two-armed pattern in flickering maps of the nova-like variable UU Aquarii

86   0   0.0 ( 0 )
 Added by Raymundo Baptista
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the analysis of a uniform sample of 31 light curves of the nova-like variable UU Aqr with eclipse mapping techniques. The data were combined to derive eclipse maps of the average steady-light component, the long-term brightness changes, and low- and high-frequency flickering components. The long-term variability responsible for the low and high brightness states is explained in terms of the response of a viscous disk to changes of 20-50 per cent in the mass transfer rate from the donor star. Low- and high-frequency flickering maps are dominated by emission from two asymmetric arcs reminiscent of those seen in the outbursting dwarf nova IP Peg, and are similarly interpreted as manifestation of a tidally-induced spiral shock wave in the outer regions of a large accretion disk. The asymmetric arcs are also seen in the map of the steady-light aside of the broad brightness distribution of a roughly steady-state disk. The arcs account for 25 per cent of the steady-light flux and are a long-lasting feature in the accretion disk of UU Aqr. We infer an opening angle of 10+/-3 degrees for the spiral arcs. The results suggest that the flickering in UU Aqr is caused by turbulence generated after the collision of disk gas with the density-enhanced spiral wave in the accretion disk.



rate research

Read More

119 - R. Baptista 2011
We report a time-lapse eclipse mapping analysis of B-band time-series of the nova-like variable UU Aqr along a typical stunted outburst in 2002 August. Disc asymmetries rotating in the prograde sense in the eclipse maps are interpreted as a precessing elliptical disc with enhanced emission at periastron. From the disc expansion velocity a disc viscosity alpha_{hot}= 0.2 is inferred. The outburst starts with a 10-fold increase in uneclipsed light, probably arising in an enhanced disc wind; the disc response is delayed by 2 d. The results are inconsistent with the disc instability model and suggest that the stunted outburst of UU Aqr are the response of its viscous accretion disc to enhanced mass-transfer events.
The morphology and optical spectrum of IPHASXJ210205+471015, a nebula classified as a possible planetary nebula, are however strikingly similar to those of ATCnc, a classical nova shell around a dwarf nova. To investigate its true nature, we have obtained high-resolution narrow-band [O III] and [N II] images and deep GTC OSIRIS optical spectra. The nebula shows an arc of [N II]-bright knots notably enriched in nitrogen, whilst an [O III]-bright bow-shock is progressing throughout the ISM. Diagnostic line ratios indicate that shocks are associated with the arc and bow-shock. The central star of this nebula has been identified by its photometric variability. Time-resolved photometric and spectroscopic data of this source reveal a period of 4.26 hours, which is attributed to a binary system. The optical spectrum is notably similar to that of RWSex, a cataclysmic variable star (CV) of the UXUMa nova-like (NL) type. Based on these results, we propose that IPHASX J210205+471015 is a classical nova shell observed around a CV-NL system in quiescence.
136 - G. Subebekova 2020
We obtained photometric observations of the nova-like cataclysmic variable RW Tri and gathered all available AAVSO and other data from the literature. We determined the system parameters and found their uncertainties using the code developed by us to model the light curves of binary systems. New time-resolved optical spectroscopic observations of RW Tri were also obtained to study the properties of emission features produced by the system. The usual interpretation of the single-peaked emission lines in nova-like systems is related to the bi-conical wind from the accretion discs inner part. However, we found that the Halpha emission profile is comprised of two components with different widths. We argue that the narrow component originates from the irradiated surface of the secondary, while the broader components source is an extended, low-velocity region in the outskirts of the accretion disc, located opposite to the collision point of the accretion stream and the disc. It appears to be a common feature for long-period nova-like systems -- a point we discuss.
113 - P. Rodriguez-Gil 2015
We present the first dynamical determination of the binary parameters of an eclipsing SW Sextantis star in the 3-4 hour orbital period range during a low state. We obtained time-resolved optical spectroscopy and photometry of HS 0220+0603 during its 2004-2005 low brightness state, as revealed in the combined SMARTS, IAC80 and M1 Group long-term optical light curve. The optical spectra taken during primary eclipse reveal a secondary star spectral type of M5.5 $pm$ 0.5 as derived from molecular band-head indices. The spectra also provide the first detection of a DAB white dwarf in a cataclysmic variable. By modelling its optical spectrum we estimate a white dwarf temperature of 30000 $pm$ 5000 K. By combining the results of modelling the white dwarf eclipse from ULTRACAM light curves with those obtained by simultaneously fitting the emission- and absorption-line radial velocity curves and I-band ellipsoidal light curves, we measure the stellar masses to be M$_1 = 0.87 pm 0.09$ M$_odot$ and M$_2 = 0.47 pm 0.05$ M$_odot$ for the white dwarf and the M dwarf, respectively, and an inclination of the orbital plane of $i approx 79^mathrm{o}$. A radius of $0.0103 pm 0.0007$ R$_odot$ is obtained for the white dwarf. The secondary star in HS 0220+0603 is likely too cool and undersized for its mass.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا