No Arabic abstract
The first two months of spectroscopic and photometric monitoring of the nearby type Ic SN 2007gr are presented. The very early discovery (less than 5 days after the explosion) and the relatively short distance of the host galaxy motivated an extensive observational campaign. SN 2007gr shows an average peak luminosity but unusually narrow spectral lines and an almost flat photospheric velocity profile. The detection of prominent carbon features in the spectra is shown and suggest a wide range in carbon abundance in stripped-envelope supernovae. SN 2007gr may be an important piece in the puzzle of the observed diversity of CC SNe.
We report our attempts to locate the progenitor of the peculiar type Ic SN 2007gr in HST pre-explosion images of the host galaxy, NGC 1058. Aligning adaptive optics Altair/NIRI imaging of SN 2007gr from the Gemini (North) Telescope with the pre-explosion HST WFPC2 images, we identify the SN position on the HST frames with an accuracy of 20 mas. Although nothing is detected at the SN position we show that it lies on the edge of a bright source, 134+/-23 mas (6.9 pc) from its nominal centre. Based on its luminosity we suggest that this object is possibly an unresolved, compact and coeval cluster and that the SN progenitor was a cluster member, although we note that model profile fitting favours a single bright star. We find two solutions for the age of this assumed cluster; 7-/+0.5 Myrs and 20-30 Myrs, with turn-off masses of 28+/-4 Msun and 12-9 Msun respectively. Pre-explosion ground-based K-band images marginally favour the younger cluster age/higher turn-off mass. Assuming the SN progenitor was a cluster member, the turn-off mass provides the best estimate for its initial mass. More detailed observations, after the SN has faded, should determine if the progenitor was indeed part of a cluster, and if so allow an age estimate to within ~2 Myrs thereby favouring either a high mass single star or lower mass interacting binary progenitor.
We present the optical (UBVRI) and ultraviolet (Swift-UVOT) photometry, and optical spectroscopy of Type Ia supernova SN 2017hpa. We study broadband UV+optical light curves and low resolution spectroscopy spanning from $-13.8$ to $+108$~d from the maximum light in $B$-band. The photometric analysis indicates that SN 2017hpa is a normal type Ia with $Delta m_{B}(15) = 0.98pm0.16$ mag and $M_{B}=-19.45pm0.15$ mag at a distance modulus of $mu = 34.08pm0.09$ mag. The $(uvw1-uvv)$ colour evolution shows that SN 2017hpa falls in the NUV-blue group. The $(B-V)$ colour at maximum is bluer in comparison to normal type Ia supernovae. Spectroscopic analysis shows that the Si II 6355 absorption feature evolves rapidly with a velocity gradient, $dot{v}=128pm 7$ km s$^{-1}$ d$^{-1}$. The pre-maximum phase spectra show prominent C II 6580 {AA} absorption feature. The C II 6580 {AA} line velocity measured from the observed spectra is lower than the velocity of Si II 6355 {AA}, which could be due to a line of sight effect. The synthetic spectral fits to the pre-maximum spectra using syn++ indicate the presence of a high velocity component in the Si II absorption, in addition to a photospheric component. Fitting the observed spectrum with the spectral synthesis code TARDIS, the mass of unburned C in the ejecta is estimated to be $sim 0.019$~$M_{odot}$. The peak bolometric luminosity is $L^{bol}_{peak} = 1.43times10^{43}$ erg s$^{-1}$. The radiation diffusion model fit to the bolometric light curve indicates $0.61pm0.02$ $M_odot$ of $^{56}$Ni is synthesized in the explosion.
Photometric and spectroscopic data of the energetic Type Ic supernova (SN) 2002ap are presented, and the properties of the SN are investigated through models of its spectral evolution and its light curve. The SN is spectroscopically similar to the hypernova SN 1997ef. However, its kinetic energy [$sim (4-10) times 10^{51}$ erg] and the mass ejected (2.5-5 $M_{odot}$) are smaller, resulting in a faster-evolving light curve. The SN synthesized $sim 0.07 M_{odot}$ of $^{56}$Ni, and its peak luminosity was similar to that of normal SNe. Brightness alone should not be used to define a hypernova, whose defining character, namely very broad spectral features, is the result of a high kinetic energy. The likely main-sequence mass of the progenitor star was 20-25 $M_{odot}$, which is also lower than that of both hypernovae SNe 1997ef and 1998bw. SN 2002ap appears to lie at the low-energy and low-mass end of the hypernova sequence as it is known so far. Observations of the nebular spectrum, which is expected to dominate by summer 2002, are necessary to confirm these values.
We present photometric and spectroscopic observations at optical and near-infrared wavelengths of the nearby type Ic SN 2007gr. These represent the most extensive data-set to date of any supernova of this sub-type, with frequent coverage from shortly after discovery to more than one year post-explosion. We deduce a rise time to B-band maximum of 11.5 pm 2.7 days. We find a peak B-band magnitude of M_B=-16.8, and light curves which are remarkably similar to the so-called hypernova SN 2002ap. In contrast, the spectra of SNe 2007gr and 2002ap show marked differences, not least in their respective expansion velocities. We attribute these differences primarily to the density profiles of their progenitor stars at the time of explosion i.e. a more compact star for SN 2007gr compared to SN 2002ap. From the quasi-bolometric light curve of SN 2007gr, we estimate that 0.076 $pm$ 0.010 Msun of 56Ni was produced in the explosion. Our near-infrared (IR) spectra clearly show the onset and disappearance of the first overtone of carbon monoxide (CO) between ~70 to 175 days relative to B-band maximum. The detection of the CO molecule implies that ionised He was not microscopically mixed within the carbon/oxygen layers. From the optical spectra, near-IR light curves, and colour evolution, we find no evidence for dust condensation in the ejecta out to about 400 days. Given the combination of unprecedented temporal coverage, and high signal-to-noise data, we suggest that SN 2007gr could be used as a template object for supernovae of this sub-class.
The results of a world-wide coordinated observational campaign on the broad-lined Type Ic SN 2003jd are presented. In total, 74 photometric data points and 26 spectra were collected using 11 different telescopes. SN 2003jd is one of the most luminous SN Ic ever observed. A comparison with other Type Ic supernovae (SNe Ic) confirms that SN 2003jd represents an intermediate case between broad-line events (2002ap, 2006aj), and highly energetic SNe (1997ef, 1998bw, 2003dh, 2003lw), with an ejected mass of M_{ej} = 3.0 +/- 1 Mo and a kinetic energy of E_{k}(tot) = 7_{-2}^{+3} 10^{51} erg. SN 2003jd is similar to SN 1998bw in terms of overall luminosity, but it is closer to SNe 2006aj and 2002ap in terms of light-curve shape and spectral evolution. The comparison with other SNe Ic, suggests that the V-band light curves of SNe Ic can be partially homogenized by introducing a time stretch factor. Finally, due to the similarity of SN 2003jd to the SN 2006aj/XRF 060218 event, we discuss the possible connection of SN 2003jd with a GRB.