We solve some decision problems for timed automata which were recently raised by S. Tripakis in [ Folk Theorems on the Determinization and Minimization of Timed Automata, in the Proceedings of the International Workshop FORMATS2003, LNCS, Volume 2791, p. 182-188, 2004 ] and by E. Asarin in [ Challenges in Timed Languages, From Applied Theory to Basic Theory, Bulletin of the EATCS, Volume 83, p. 106-120, 2004 ]. In particular, we show that one cannot decide whether a given timed automaton is determinizable or whether the complement of a timed regular language is timed regular. We show that the problem of the minimization of the number of clocks of a timed automaton is undecidable. It is also undecidable whether the shuffle of two timed regular languages is timed regular. We show that in the case of timed Buchi automata accepting infinite timed words some of these problems are Pi^1_1-hard, hence highly undecidable (located beyond the arithmetical hierarchy).