Do you want to publish a course? Click here

Testing the nature of S0 galaxies using planetary nebula kinematics in NGC 1023

110   0   0.0 ( 0 )
 Added by Edo Noordermeer
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the manner in which lenticular galaxies are formed by studying their stellar kinematics: an S0 formed from a fading spiral galaxy should display similar cold outer disc kinematics to its progenitor, while an S0 formed in a minor merger should be more dominated by random motions. In a pilot study to attempt to distinguish between these scenarios, we have measured the planetary nebula (PN) kinematics of the nearby S0 system NGC 1023. Using the Planetary Nebula Spectrograph, we have detected and measured the line-of-sight velocities of 204 candidate PNe in the field of this galaxy. Out to intermediate radii, the system displays the kinematics of a normal rotationally-supported disc system. After correction of its rotational velocities for asymmetric drift, the galaxy lies just below the spiral galaxy Tully-Fisher relation, as one would expect for a fading system. However, at larger radii the kinematics undergo a gradual but major transition to random motion with little rotation. This transition does not seem to reflect a change in the viewing geometry or the presence of a distinct halo component, since the number counts of PNe follow the same simple exponential decline as the stellar continuum with the same projected disc ellipticity out to large radii. The galaxys small companion, NGC 1023A, does not seem to be large enough to have caused the observed modification either. This combination of properties would seem to indicate a complex evolutionary history in either the transition to form an S0 or in the past life of the spiral galaxy from which the S0 formed. More data sets of this type from both spirals and S0s are needed in order to definitively determine the relationship between these types of system.



rate research

Read More

The stellar kinematics of the spheroids and discs of S0 galaxies contain clues to their formation histories. Unfortunately, it is difficult to disentangle the two components and to recover their stellar kinematics in the faint outer parts of the galaxies using conventional absorption line spectroscopy. This paper therefore presents the stellar kinematics of six S0 galaxies derived from observations of planetary nebulae (PNe), obtained using the Planetary Nebula Spectrograph. To separate the kinematics of the two components, we use a maximum-likelihood method that combines the discrete kinematic data with a photometric component decomposition. The results of this analysis reveal that: the discs of S0 galaxies are rotationally supported; however, the amount of random motion in these discs is systematically higher than in comparable spiral galaxies; and the S0s lie around one magnitude below the Tully--Fisher relation for spiral galaxies, while their spheroids lie nearly one magnitude above the Faber--Jackson relation for ellipticals. All of these findings are consistent with a scenario in which spirals are converted into S0s through a process of mild harassment or pestering, with their discs somewhat heated and their spheroid somewhat enhanced by the conversion process. In such a scenario, one might expect the properties of S0s to depend on environment. We do not see such an effect in this fairly small sample, although any differences would be diluted by the fact that the current location does not necessarily reflect the environment in which the transformation occurred. Similar observations of larger samples probing a broader range of environments, coupled with more detailed modelling of the transformation process to match the wide range of parameters that we have shown can now be measured, should take us from these first steps to the definitive answer as to how S0 galaxies form.
The origins of S0 galaxies remain obscure, with various mechanisms proposed for their formation, likely depending on environment. These mechanisms would imprint different signatures in the galaxies stellar kinematics out to large radii, offering a method for distinguishing between them. We aim to study a sample of six S0 galaxies from a range of environments, and use planetary nebulae (PNe) as tracers of their stellar populations out to very large radii, to determine their kinematics in order to understand their origins. Using a special-purpose instrument, the Planetary Nebula Spectrograph, we observe and extract PNe catalogues for these six systems*. We show that the PNe have the same spatial distribution as the starlight, that the numbers of them are consistent with what would be expected in a comparable old stellar population in elliptical galaxies, and that their kinematics join smoothly onto those derived at smaller radii from conventional spectroscopy. The high-quality kinematic observations presented here form an excellent set for studying the detailed kinematics of S0 galaxies, in order to unravel their formation histories. We find that PNe are good tracers of stellar kinematics in these systems. We show that the recovered kinematics are largely dominated by rotational motion, although with significant random velocities in most cases.
To investigate the origins of S0 galaxies, we present a new method of analyzing their stellar kinematics from discrete tracers such as planetary nebulae. This method involves binning the data in the radial direction so as to extract the most general possible non-parametric kinematic profiles, and using a maximum likelihood fit within each bin in order to make full use of the information in the discrete kinematic tracers. Both disk and spheroid kinematic components are fitted, with a two-dimensional decomposition of imaging data used to attribute to each tracer a probability of membership in the separate components. Likelihood clipping also allows us to identify objects whose properties are not consistent with the adopted model, rendering the technique robust against contaminants and able to identify additional kinematic features. The method is first tested on an N-body simulated galaxy to assess possible sources of systematic error associated with the structural and kinematic decomposition, which are found to be small. It is then applied to the S0 system NGC~1023, for which a planetary nebula catalogue has already been released and analyzed by (Noordermeer et al., 2008). The correct inclusion of the spheroidal component allows us to show that, contrary to previous claims, the stellar kinematics of this galaxy are indistinguishable from those of a normal spiral galaxy, indicating that it may have evolved directly from such a system via gas stripping or secular evolution. The method also successfully identifies a population of outliers whose kinematics are different from those of the main galaxy; these objects can be identified with a stellar stream associated with the companion galaxy NGC~1023A.
154 - Neil Trentham , Brent Tully 2009
We present a compilation of galaxies in the NGC 1023 Group, an accumulation of late-type galaxies at a distance of 10 Mpc. Members at high and intermediate luminosities were identified from their spectroscopic velocities. Members at low luminosities were identified from their morphologies on wide-field CCD images. The faint-end slope is in the range -1.27 < alpha < -1.12. There is evidence for two dwarf galaxy populations: one in the halo of NGC 1023 that is dominated by dwarf elliptical galaxies, and one in the infall region surrounding NGC 1023 that contains mainly dwarf irregular galaxies. Similar distinctive populations are observed in the Local Group.
The planetary nebula populations of relatively nearby galaxies can be easily observed and provide both a distance estimate and a tool with which dynamical information can be obtained. Usually the requisite radial velocities are obtained by multi-object spectroscopy once the planetary nebulae have been located by direct imaging. Here we report on a technique for measuring planetary nebula kinematics using the double-beam ISIS spectrograph at the William Herschel Telescope in a novel slitless mode, which enables the detection and radial velocity measurements to be combined into a single step. The results on our first target, the Sab galaxy NGC 4736, allow the velocity dispersion of the stellar population in a disk galaxy to be traced out to four scale lengths for the first time and are consistent with a simple isothermal sheet model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا