Do you want to publish a course? Click here

Quantum nanomagnets and nuclear spins: an overview

321   0   0.0 ( 0 )
 Added by Andrea Morello
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

This mini-review presents a simple and accessible summary on the fascinating physics of quantum nanomagnets coupled to a nuclear spin bath. These chemically synthesized systems are an ideal test ground for the theories of decoherence in mesoscopic quantum degrees of freedom, when the coupling to the environment is local and not small. We shall focus here on the most striking quantum phenomenon that occurs in such nanomagnets, namely the tunneling of their giant spin through a high anisotropy barrier. It will be shown that perturbative treatments must be discarded, and replaced by a more sophisticated formalism where the dynamics of the nanomagnet and the nuclei that couple to it are treated together from the beginning. After a critical review of the theoretical predictions and their experimental verification, we continue with a set of experimental results that challenge our present understanding, and outline the importance of filling also this last gap in the theory.



rate research

Read More

Highly polarized nuclear spins within a semiconductor quantum dot (QD) induce effective magnetic (Overhauser) fields of up to several Tesla acting on the electron spin or up to a few hundred mT for the hole spin. Recently this has been recognized as a resource for intrinsic control of QD-based spin quantum bits. However, only static long-lived Overhauser fields could be used. Here we demonstrate fast redirection on the microsecond time-scale of Overhauser fields of the order of 0.5 T experienced by a single electron spin in an optically pumped GaAs quantum dot. This has been achieved using full coherent control of an ensemble of 10^3-10^4 optically polarized nuclear spins by sequences of short radio-frequency (rf) pulses. These results open the way to a new class of experiments using rf techniques to achieve highly-correlated nuclear spins in quantum dots, such as adiabatic demagnetization in the rotating frame leading to sub-micro K nuclear spin temperatures, rapid adiabatic passage, and spin squeezing.
Entanglement generation and detection are two of the most sought-after goals in the field of quantum control. Besides offering a means to probe some of the most peculiar and fundamental aspects of quantum mechanics, entanglement in many-body systems can be used as a tool to reduce fluctuations below the standard quantum limit. For spins, or spin-like systems, such a reduction of fluctuations can be realized with so-called squeezed states. Here we present a scheme for achieving coherent spin squeezing of nuclear spin states in few-electron quantum dots. This work represents a major shift from earlier studies in quantum dots, which have explored classical narrowing of the nuclear polarization distribution through feedback involving stochastic spin flips. In contrast, we use the nuclear-polarization-dependence of the electron spin resonance (ESR) to provide a non-linearity which generates a non-trivial, area-preserving, twisting dynamics that squeezes and stretches the nuclear spin Wigner distribution without the need for nuclear spin flips.
Irradiating a semiconductor with circularly polarized light creates spin-polarized charge carriers. If the material contains atoms with non-zero nuclear spin, they interact with the electron spins via the hyperfine coupling. Here, we consider GaAs/AlGaAs quantum wells, where the conduction-band electron spins interact with three different types of nuclear spins. The hyperfine interaction drives a transfer of spin polarization to the nuclear spins, which therefore acquire a polarization that is comparable to that of the electron spins. In this paper, we analyze the dynamics of the optical pumping process in the presence of an external magnetic field while irradiating a single quantum well with a circularly polarized laser. We measure the time dependence of the photoluminescence polarization to monitor the buildup of the nuclear spin polarization and thus the average hyperfine interaction acting on the electron spins. We present a simple model that adequately describes the dynamics of this process and is in good agreement with the experimental data.
Sensing single nuclear spins is a central challenge in magnetic resonance based imaging techniques. Although different methods and especially diamond defect based sensing and imaging techniques in principle have shown sufficient sensitivity, signals from single nuclear spins are usually too weak to be distinguished from background noise. Here, we present the detection and identification of remote single C-13 nuclear spins embedded in nuclear spin baths surrounding a single electron spins of a nitrogen-vacancy centre in diamond. With dynamical decoupling control of the centre electron spin, the weak magnetic field ~10 nT from a single nuclear spin located ~3 nm from the centre with hyperfine coupling as weak as ~500 Hz is amplified and detected. The quantum nature of the coupling is confirmed and precise position and the vector components of the nuclear field are determined. Given the distance over which nuclear magnetic fields can be detected the technique marks a firm step towards imaging, detecting and controlling nuclear spin species external to the diamond sensor.
121 - P. Maletinsky , M. Kroner , 2009
The physics of interacting nuclear spins arranged in a crystalline lattice is typically described using a thermodynamic framework: a variety of experimental studies in bulk solid-state systems have proven the concept of a spin temperature to be not only correct but also vital for the understanding of experimental observations. Using demagnetization experiments we demonstrate that the mesoscopic nuclear spin ensemble of a quantum dot (QD) can in general not be described by a spin temperature. We associate the observed deviations from a thermal spin state with the presence of strong quadrupolar interactions within the QD that cause significant anharmonicity in the spectrum of the nuclear spins. Strain-induced, inhomogeneous quadrupolar shifts also lead to a complete suppression of angular momentum exchange between the nuclear spin ensemble and its environment, resulting in nuclear spin relaxation times exceeding an hour. Remarkably, the position dependent axes of quadrupolar interactions render magnetic field sweeps inherently non-adiabatic, thereby causing an irreversible loss of nuclear spin polarization.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا