Do you want to publish a course? Click here

The UV-Optical Color Magnitude Diagram II: Physical Properties and Morphological Evolution On and Off of a Star-Forming Sequence

294   0   0.0 ( 0 )
 Added by David Schiminovich
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use the UV-optical color magnitude diagram in combination with spectroscopic and photometric measurements derived from the SDSS spectroscopic sample to measure the distribution of galaxies in the local universe (z<0.25) and their physical properties as a function of specific star formation rate (SSFR) and stellar mass. Throughout this study our emphasis is on the properties of galaxies on and off of a local star-forming sequence. We discuss how the physical characteristics of galaxies along this sequence are related to scaling relations typically derived for galaxies of different morphological types. We find, among other trends that our measure of the star formation rate surface density is nearly constant along this sequence. We discuss this result and implications for galaxies at higher redshift. For the first time, we report on measurements of the local UV luminosity function versus galaxy structural parameters as well as inclination. We also split our sample into disk-dominated and bulge-dominated subsamples using the i-band Sersic index and find that disk-dominated galaxies occupy a very tight locus in SSFR vs. stellar mass space while bulge-dominated galaxies display a much larger spread of SSFR at fixed stellar mass. A significant fraction of galaxies with SSFR and SF surface density above those on the star-forming sequence are bulge-dominated. We can use our derived distribution functions to ask whether a significant fraction of these galaxies may be experiencing a final episode of star formation (possibly induced by a merger or other burst), soon to be quenched, by determining whether this population can explain the growth rate of the non-star-forming galaxies on the red sequence. (Abridged)



rate research

Read More

237 - Ted K. Wyder 2007
We have analyzed the bivariate distribution of galaxies as a function of ultraviolet-optical colors and absolute magnitudes in the local universe. The sample consists of galaxies with redshifts and optical photometry from the Sloan Digital Sky Survey (SDSS) main galaxy sample matched with detections in the near-ultraviolet (NUV) and far-ultraviolet (FUV) bands in the Medium Imaging Survey being carried out by the Galaxy Evolution Explorer (GALEX) satellite. In the (NUV-r)_{0.1} vs. M_{r,0.1} galaxy color-magnitude diagram, the galaxies separate into two well-defined blue and red sequences. The (NUV-r)_{0.1} color distribution at each M_{r,0.1} is not well fit by the sum of two Gaussians due to an excess of galaxies in between the two sequences. The peaks of both sequences become redder with increasing luminosity with a distinct blue peak visible up to M_{r,0.1}sim-23. The r_{0.1}-band luminosity functions vary systematically with color, with the faint end slope and characteristic luminosity gradually increasing with color. After correcting for attenuation due to dust, we find that approximately one quarter of the color variation along the blue sequence is due to dust with the remainder due to star formation history and metallicity. Finally, we present the distribution of galaxies as a function of specific star formation rate and stellar mass. The specific star formation rates imply that galaxies along the blue sequence progress from low mass galaxies with star formation rates that increase somewhat with time to more massive galaxies with a more or less constant star formation rate. Above a stellar mass of ~10^10.5 M_{sun}, galaxies with low ratios of current to past averaged star formation rate begin to dominate.
123 - Izumi Hachisu 2016
We have examined the outburst tracks of 40 novae in the color-magnitude diagram (intrinsic B-V color versus absolute V magnitude). After reaching the optical maximum, each nova generally evolves toward blue from the upper-right to the lower-left and then turns back toward the right. The 40 tracks are categorized into one of six templates: very fast nova V1500 Cyg; fast novae V1668 Cyg, V1974 Cyg, and LV Vul; moderately fast nova FH Ser; and very slow nova PU Vul. These templates are located from the left (blue) to the right (red) in this order, depending on the envelope mass and nova speed class. A bluer nova has a less massive envelope and faster nova speed class. In novae with multiple peaks, the track of the first decay is more red than that of the second (or third) decay, because a large part of the envelope mass had already been ejected during the first peak. Thus, our newly obtained tracks in the color-magnitude diagram provide useful information to understand the physics of classical novae. We also found that the absolute magnitude at the beginning of the nebular phase is almost similar among various novae. We are able to determine the absolute magnitude (or distance modulus) by fitting the track of a target nova to the same classification of a nova with a known distance. This method for determining nova distance has been applied to some recurrent novae and their distances have been recalculated.
We introduce a new quantity, the mass flux density of galaxies evolving from the blue sequence to the red sequence. We propose a simple technique for constraining this mass flux using the volume corrected number density in the extinction-corrected UV-optical color magnitude distribution, the stellar age indexes H-delta-a and D_n(4000), and a simple prescription for spectral evolution using a quenched star formation history. We exploit the excellent separation of red and blue sequences in the NUV-r band color-magnitude diagram. The final value we measure, 0.033 M_sun yr^-1 Mpc^-3, is strictly speaking an upper limit due to the possible contributions of bursting, composite, and extincted galaxies. However, it compares favorably with estimates of the average mass flux that we make based on the red luminosity function evolution derived from the DEEPII and COMBO-17 surveys (Bell et al 2004; Faber et al. 2005), 0.034 M_sun yr^-1 Mpc^-3. We find that the blue sequence mass has remained roughly constant since z=1 (mass flux 0.01 M_sun yr^-1 Mpc^-3) but the average on-going star formation of 0.037$ M_sun yr^-1 Mpc^-3 over 0<z<1 is balanced by mass flux off the blue sequence. We explore the nature of the galaxies in the transition zone with particular attention to the frequency and impact of AGNs. The AGN fraction peaks in the transition zone. We find circumstantial, albeit weak evidence that the quench rates are higher in higher luminosity AGNs.
In this note we identify and characterize the ultraviolet-infrared color-magnitude relation of star-forming galaxies. The ultraviolet to mid-infrared flux ratios of star-forming galaxies span over two orders of magnitude and show a clear dependence on absolute magnitude from M_W3 ~ -13 to M_W3 ~ -25, which may present problems for models of galaxy spectral energy distributions that have been largely verified on ~L* galaxies. The color-magnitude relation of star-forming galaxies illustrates the broadband spectral diversity of star-forming galaxies that results from established correlations between the physical properties and mass, including the mass-metallicity relation.
180 - David G. Turner 2011
Existing photometry for NGC 2264 tied to the Johnson and Morgan (1953) UBV system is reexamined and, in the case of the original observations by Walker (1956), reanalyzed in order to generate a homogeneous data set for cluster stars. Color terms and a Balmer discontinuity effect in Walkers observations were detected and corrected, and the homogenized data were used in a new assessment of the cluster reddening, distance, and age. Average values of E(B-V)=0.075+-0.003 s.e. and Vo-Mv=9.45+-0.03 s.e. (d=777+-12 pc) are obtained, in conjunction with an inferred cluster age of ~5.5x10^6 yr from pre-main-sequence members and the location of the evolved, luminous, O7 V((f)) dwarf S Mon relative to the ZAMS. The cluster main sequence also contains gaps that may have a dynamical origin. The dust responsible for the initial reddening towards NGC 2264 is no more than 465 pc distant, and there are numerous, reddened and unreddened, late-type stars along the line of sight that are difficult to separate from cluster members by standard techniques, except for a small subset of stars on the far side of the cluster embedded in its gas and dust and background B-type ZAMS members of Mon OB2. A compilation of likely NGC 2264 members is presented. Only 3 of the 4 stars recently examined by asteroseismology appear to be likely cluster members. NGC 2264 is also noted to be a double cluster, which has not been mentioned previously in the literature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا