Do you want to publish a course? Click here

Integral equations and large-time asymptotics for finite-temperature Ising chain correlation functions

157   0   0.0 ( 0 )
 Added by Adam Gamsa
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

This work concerns the dynamical two-point spin correlation functions of the transverse Ising quantum chain at finite (non-zero) temperature, in the universal region near the quantum critical point. They are correlation functions of twist fields in the massive Majorana fermion quantum field theory. At finite temperature, these are known to satisfy a set of integrable partial differential equations, including the sinh-Gordon equation. We apply the classical inverse scattering method to study them, finding that the ``initial scattering data corresponding to the correlation functions are simply related to the one-particle finite-temperature form factors calculated recently by one of the authors. The set of linear integral equations (Gelfand-Levitan-Marchenko equations) associated to the inverse scattering problem then gives, in principle, the two-point functions at all space and time separations, and all temperatures. From them, we evaluate the large-time asymptotic expansion ``near the light cone, in the region where the difference between the space and time separations is of the order of the correlation length.



rate research

Read More

A new nonlinear integral equation (NLIE) describing the thermodynamics of the Heisenberg spin chain is derived based on the t-W relation of the quantum transfer matrices. The free energy of the system in a magnetic field is thus obtained by solving the NLIE. This method can be generalized to other lattice quantum integrable models. Taking the SU(3)-invariant quantum spin chain as an example, we construct the corresponding NLIEs and compute the free energy. The present results coincide exactly with those obtained via other methods previously.
We introduce a formalism for time-dependent correlation functions for systems whose evolutions are governed by non-Hermitian Hamiltonians of general type. It turns out that one can define two different types of time correlation functions. Both these definitions seem to be physically consistent while becoming equivalent only in certain cases. Moreover, when autocorrelation functions are considered, one can introduce another function defined as the relative difference between the two definitions. We conjecture that such a function can be used to assess the positive semi-definiteness of the density operator without computing its eigenvalues. We illustrate these points by studying analytically a number of models with two energy levels.
This paper deals with $tilde{chi}^{(6)}$, the six-particle contribution to the magnetic susceptibility of the square lattice Ising model. We have generated, modulo a prime, series coefficients for $tilde{chi}^{(6)}$. The length of the series is sufficient to produce the corresponding Fuchsian linear differential equation (modulo a prime). We obtain the Fuchsian linear differential equation that annihilates the depleted series $Phi^{(6)}=tilde{chi}^{(6)} - {2 over 3} tilde{chi}^{(4)} + {2 over 45} tilde{chi}^{(2)}$. The factorization of the corresponding differential operator is performed using a method of factorization modulo a prime introduced in a previous paper. The depleted differential operator is shown to have a structure similar to the corresponding operator for $tilde{chi}^{(5)}$. It splits into factors of smaller orders, with the left-most factor of order six being equivalent to the symmetric fifth power of the linear differential operator corresponding to the elliptic integral $E$. The right-most factor has a direct sum structure, and using series calculated modulo several primes, all the factors in the direct sum have been reconstructed in exact arithmetics.
We compute analytically and in closed form the four-point correlation function in the plane, and the two-point correlation function in the upper half-plane, of layering vertex operators in the two dimensional conformally invariant system known as the Brownian Loop Soup. These correlation functions depend on multiple continuous parameters: the insertion points of the operators, the intensity of the soup, and the charges of the operators. In the case of the four-point function there is non-trivial dependence on five continuous parameters: the cross-ratio, the intensity, and three real charges. The four-point function is crossing symmetric. We analyze its conformal block expansion and discover a previously unknown set of new conformal primary operators.
We evaluate the non-Markovian finite-temperature two-time correlation functions (CFs) of system operators of a pure-dephasing spin-boson model in two different ways, one by the direct exact operator technique and the other by the recently derived evolution equations, valid to second order in the system-environment interaction Hamiltonian. This pure-dephasing spin-boson model that is exactly solvable has been extensively studied as a simple decoherence model. However, its exact non-Markovian finite-temperature two-time system operator CFs, to our knowledge, have not been presented in the literature. This may be mainly due to the fact, illustrated in this article, that in contrast to the Markovian case, the time evolution of the reduced density matrix of the system (or the reduced quantum master equation) alone is not sufficient to calculate the two-time system operator CFs of non-Markovian open systems. The two-time CFs obtained using the recently derived evolution equations in the weak system-environment coupling case for this non-Markovian pure-dephasing model happen to be the same as those obtained from the exact evaluation. However, these results significantly differ from the non-Markovian two-time CFs obtained by wrongly directly applying the quantum regression theorem (QRT), a useful procedure to calculate the two-time CFs for weak-coupling Markovian open systems. This demonstrates clearly that the recently derived evolution equations generalize correctly the QRT to non-Markovian finite-temperature cases. It is believed that these evolution equations will have applications in many different branches of physics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا