These lectures provide a pedagogical, introductory review of the so-called Attractor Mechanism (AM) at work in two different 4-dimensional frameworks: extremal black holes in N=2 supergravity and N=1 flux compactifications. In the first case, AM determines the stabilization of scalars at the black hole event horizon purely in terms of the electric and magnetic charges, whereas in the second context the AM is responsible for the stabilization of the universal axion-dilaton and of the (complex structure) moduli purely in terms of the RR and NSNS fluxes. Two equivalent approaches to AM, namely the so-called ``criticality conditions and ``New Attractor ones, are analyzed in detail in both frameworks, whose analogies and differences are discussed. Also a stringy analysis of both frameworks (relying on Hodge-decomposition techniques) is performed, respectively considering Type IIB compactified on $CY_{3}$ and its orientifolded version, associated with $frac{CY_{3}times T^{2}}{mathbb{Z}_{2}}$. Finally, recent results on the U-duality orbits and moduli spaces of non-BPS extremal black hole attractors in $3leqslant Nleqslant 8$, d=4 supergravities are reported.