Do you want to publish a course? Click here

Quantum dot cascade laser: Arguments in favor

179   0   0.0 ( 0 )
 Added by Ivan Dmitriev
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum cascade lasers are recognized as propitious candidates for future terahertz optoelectronics. Here we demonstrate several definite advantages of quantum dot cascade structures over quantum well devices, which suffer fundamental performance limitations owing to continuous carrier spectrum. The discrete spectrum of quantum dots opens an opportunity to control the non-radiative relaxation and optical loss and also provides for more flexibility in the choice of an optical and electrical design of the laser.



rate research

Read More

We propose to use ultracold fermionic atoms in one-dimensional optical lattices to quantum simulate the electronic transport in quantum cascade laser (QCL) structures. The competition between the coherent tunneling among (and within) the wells and the dissipative decay at the basis of lasing is discussed. In order to validate the proposed simulation scheme, we quantitatively address such competition in a simplified one-dimensional model. We show the existence of optimal relationships between the model parameters, maximizing the particle current, the population inversion (or their product), and the stimulated emission rate. This substantiates the concept of emulating the QCL operation mechanisms in cold-atom optical lattice simulators, laying the groundwork for addressing open questions, such as the impact of electron-electron scattering and the origin of transport-induced noise, in the design of new-generation QCLs.
139 - Z. G. Xie , S. Gotzinger , W. Fang 2007
We report a quantum dot microcavity laser with a cw sub-microwatt lasing threshold, where a significant reduction of the lasing threshold is observed when a single quantum dot (QD) state is aligned with a cavity mode. The quality factor exceeds 15 000 before the system lases. When no QD states are resonant, below threshold the cavity mode initially degrades with increasing pump power, after which saturation occurs and then the cavity mode recovers. We associate the initial cavity mode spoiling with QD state broadening that occurs with increasing pump power.
112 - I. Favero 2004
We present the experimental evidence of giant optical anisotropy in single InAs quantum dots. Polarization-resolved photoluminescence spectroscopy reveals a linear polarization ratio with huge fluctuations, from one quantum dot to another, in sign and in magnitude with absolute values up to 82%. Systematic measurements on hundreds of quantum dots coming from two different laboratories demonstrate that the giant optical anisotropy is an intrinsic feature of dilute quantum-dot arrays.
We detect a novel radiative cascade from a neutral semiconductor quantum dot. The cascade initiates from a metastable biexciton state in which the holes form a spin-triplet configuration, Pauli-blockaded from relaxation to the spin-singlet ground state. The triplet biexciton has two photon-phonon-photon decay paths. Unlike in the singlet-ground state biexciton radiative cascade, in which the two photons are co-linearly polarized, in the triplet biexciton cascade they are crosslinearly polarized. We measured the two-photon polarization density matrix and show that the phonon emitted when the intermediate exciton relaxes from excited to ground state, preserves the excitons spin. The phonon, thus, does not carry with it any which-path information other than its energy. Nevertheless, entanglement distillation by spectral filtering was found to be rather ineffective for this cascade. This deficiency results from the opposite sign of the anisotropic electron-hole exchange interaction in the excited exciton relative to that in the ground exciton.
We report on calculations of broadening effects in QCL due to alloy scattering. The output of numerical calculations of alloy broadened Landau levels compare favorably with calculations performed at the self-consistent Born approximation. Results for Landau level width and optical absorption are presented. A disorder activated forbidden transition becomes significant in the vicinity of crossings of Landau levels which belong to different subbands. A study of the time dependent survival probability in the lowest Landau level of the excited subband is performed. It is shown that at resonance the population relaxation occurs in a subpicosecond scale.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا