We construct a canonical isomorphism between the Bethe algebra acting on a multiplicity space of a tensor product of evaluation gl_N[t]-modules and the scheme-theoretic intersection of suitable Schubert varieties. Moreover, we prove that the multiplicity space as a module over the Bethe algebra is isomorphic to the coregular representation of the scheme-theoretic intersection. In particular, this result implies the simplicity of the spectrum of the Bethe algebra for real values of evaluation parameters and the transversality of the intersection of the corresponding Schubert varieties.
Given any pair of positive integers m and n, we construct a new Hopf algebra, which may be regarded as a degenerate version of the quantum group of gl(m+n). We study its structure and develop a highest weight representation theory. The finite dimensional simple modules are classified in terms of highest weights, which are essentially characterised by m+n-2 nonnegative integers and two arbitrary nonzero scalars. In the special case with m=2 and n=1, an explicit basis is constructed for each finite dimensional simple module. For all m and n, the degenerate quantum group has a natural irreducible representation acting on C(q)^(m+n). It admits an R-matrix that satisfies the Yang-Baxter equation and intertwines the co-multiplication and its opposite. This in particular gives rise to isomorphisms between the two module structures of any tensor power of C(q)^(m+n) defined relative to the co-multiplication and its opposite respectively. A topological invariant of knots is constructed from this R-matrix, which reproduces the celebrated HOMFLY polynomial. Degenerate quantum groups of other classical types are briefly discussed.
Induced representations for quantum groups are defined starting from coisotropic quantum subgroups and their main properties are proved. When the coisotropic quantum subgroup has a suitably defined section such representations can be realized on associated quantum bundles on general embeddable quantum homogeneous spaces.
Given a bicovariant differential calculus $(mathcal{E}, d)$ such that the braiding map is diagonalisable in a certain sense, the bimodule of two-tensors admits a direct sum decomposition into symmetric and anti-symmetric tensors. This is used to prove the existence of a bicovariant torsionless connection on $mathcal{E}$. Following Heckenberger and Schm{u}dgen, we study invariant metrics and the compatibility of covariant connections with such metrics. A sufficient condition for the existence and uniqueness of bicovariant Levi-Civita connections is derived. This condition is shown to hold for cocycle deformations of classical Lie groups.
We develop a theory of localization for braid group representations associated with objects in braided fusion categories and, more generally, to Yang-Baxter operators in monoidal categories. The essential problem is to determine when a family of braid representations can be uniformly modelled upon a tensor power of a fixed vector space in such a way that the braid group generators act locally. Although related to the notion of (quasi-)fiber functors for fusion categories, remarkably, such localizations can exist for representations associated with objects of non-integral dimension. We conjecture that such localizations exist precisely when the object in question has dimension the square-root of an integer and prove several key special cases of the conjecture.
In the recent paper [arXiv:1612.06893] P. Burgisser and A. Lerario introduced a geometric framework for a probabilistic study of real Schubert Problems. They denoted by $delta_{k,n}$ the average number of projective $k$-planes in $mathbb{R}textrm{P}^n$ that intersect $(k+1)(n-k)$ many random, independent and uniformly distributed linear projective subspaces of dimension $n-k-1$. They called $delta_{k,n}$ the expected degree of the real Grassmannian $mathbb{G}(k,n)$ and, in the case $k=1$, they proved that: $$ delta_{1,n}= frac{8}{3pi^{5/2}} cdot left(frac{pi^2}{4}right)^n cdot n^{-1/2} left( 1+mathcal{O}left(n^{-1}right)right) .$$ Here we generalize this result and prove that for every fixed integer $k>0$ and as $nto infty$, we have begin{equation*} delta_{k,n}=a_k cdot left(b_kright)^ncdot n^{-frac{k(k+1)}{4}}left(1+mathcal{O}(n^{-1})right) end{equation*} where $a_k$ and $b_k$ are some (explicit) constants, and $a_k$ involves an interesting integral over the space of polynomials that have all real roots. For instance: $$delta_{2,n}= frac{9sqrt{3}}{2048sqrt{2pi}} cdot 8^n cdot n^{-3/2} left( 1+mathcal{O}left(n^{-1}right)right).$$ Moreover we prove that these numbers belong to the ring of periods intoduced by Kontsevich and Zagier and we give an explicit formula for $delta_{1,n}$ involving a one dimensional integral of certain combination of Elliptic functions.