We calculate the leading-order perturbative contribution to $gamma p to M_{V} p$, with $M_V$ being a $Phi$ or $J/Psi$ meson, in the kinematic region of large energy and scattering angle.
We report on an attempt to describe hard exclusive photoproduction of $J/Psi$ mesons, i.e. the reaction $gamma p to J/Psi p$, by means of a modified version of the hard-scattering approach, in which the proton is treated as a quark-diquark rather than a three-quark system. In order to improve the applicability of the model at momentum transfers of only a few GeV we take into account constituent-mass effects in the calculation of the perturbative scattering amplitude. With a standard $J/Psi$-meson distribution amplitude and diquark-model parameters adopted from preceding investigations of other photon-induced reactions our predictions for differential cross sections overestimate the naive extrapolation of the low-momentum transfer ZEUS data. Our results, however, reveal the importance of taking into account the charm-quark mass.
We study the photoproduction of the vector mesons $Phi$ and $J/Psi$ off a proton in the kinematical regime of large energies and scattering angles within the framework of perturbative QCD. Our investigations are based on the hard scattering approach. This means that the hadrons are replaced by their valence Fock states and scattering on the partonic level is described by tree graphs in which the large transferred momentum is redistributed between the valence partons via the exchange of hard gluons. We find that the unpolarized photoproduction cross sections are dominated by Compton-scattering-like graphs in which the photon couples to the proton, whereas vector-meson-dominance-like graphs, in which the photon fluctuates into the heavy quark-antiquark pair which then exchanges two gluons with the proton, play a minor role. We give explicit predictions for unpolarized scattering cross sections and compare them with experimental data where possible.
{We investigate the photoproduction process $ p gamma rightarrow Lambda_{c}^{+} overline{D^{0}}$ within the handbag approach, which we assume to be the dominant mechanism at energies well above the production threshold and in the forward scattering hemisphere.
We present $Phi$- and $J/Psi$--nuclear bound state energies and absorption widths for some selected nuclei, using potentials in the local density approximation computed from an effective Lagrangian approach combined with the quark-meson coupling model. Our results suggest that these mesons should form bound states with all the nuclei considered provided that these mesons are produced in nearly recoilless kinematics.
Exclusive production of $rho^0$ and $J/psi$ mesons in e^+ p collisions has been studied with the ZEUS detector in the kinematic range $0.25 < Q^2 < 50 GeV^2, 20 < W < 167 GeV$ for the $rho^0$ data and $2 < Q^2 < 40 GeV^2, 50 < W < 150 GeV$ for the $J/psi$ data. Cross sections for exclusive $rho^0$ and $J/psi$ production have been measured as a function of $Q^2, W$ and $t$. The spin-density matrix elements $r^{04}_{00}, r^1_{1-1}$ and $Re r^{5}_{10}$ have been determined for exclusive $rho^0$ production as well as $r^{04}_{00}$ and $r^{04}_{1-1}$ for exclusive $J/psi$ production. The results are discussed in the context of theoretical models invoking soft and hard phenomena.