We report the measurements of the heat capacity of ^4He confined in nanoporous Gelsil glass that has nanopores of 2.5-nm diameter at pressures up to 5.3 MPa. The heat capacity has a broad peak at a temperature much higher than the superfluid transition temperature obtained using the torsional oscillator technique. The peak provides a definite thermodynamic evidence for the formation of localized Bose-Einstein condensates (LBECs) on nanometer length scales. The temperature dependence of heat capacity is well described by the excitations of phonons and rotons, supporting the existence of LBEC.
We have studied the liquid - solid (L-S) phase transition of ^4He confined in nanoporous glass, which has interconnected nanopores of 2.5 nm in diameter. The L-S boundary is determined by the measurements of pressure and thermal response during slow cooling and warming. Below 1 K, the freezing pressure is elevated to 1.2 MPa from the bulk freezing pressure, and appears to be independent of temperature. The T-independent L-S boundary implies the existence of a localized Bose-Einstein condensation state, in which long-range superfluid coherence is destroyed by narrowness of the nanopores and random potential.
The superfluid transition in liquid 4He filled in Gelsil glass observed in recent experiments is discussed in the framework of quantum critical phenomena. We show that quantum fluctuations of phase are indeed important at the experimentally studied temperature range owing to the small pore size of Gelsil, in contrast to 4He filled in previously studied porous media such as Vycor glass. As a consequence of an effective particle-hole symmetry, the quantum critical phenomena of the system are described by the 4D XY universality class, except at very low temperatures. The simple scaling agrees with the experimental data remarkably well.
$^4$He confined in nanoporous media is a model Bose system that exhibits quantum phase transition (QPT) by varying pressure. We have precisely determined the critical exponent of the superfluid density of $^4$He in porous Gelsil glasses with pore size of 3.0 nm using the Helmholtz resonator technique. The critical exponent $zeta$ of the superfluid density was found to be 1.0 $pm$ 0.1 for the pressure range 0.1 < P < 2.4 MPa. This value provides decisive evidence that the finite-temperature superfluid transition belongs to the four-dimensional (4D) XY universality class, in contrast to the classical 3D XY one in bulk liquid 4He, in which $zeta$ = 0.67. The quantum critical behavior at a finite temperature is understood by strong phase fluctuation in local Bose-Einstein condensates above the superfluid transition temperature. $^4$He in nanoporous media is a unique example in which quantum criticality emerges not only at 0 K but at finite temperatures.
The partition function and specific heat of a system consisting of a finite number of bosons confined in an external potential are calculated in canonical ensemble. Using the grand partition function as the generating function of the partition function, an iterative scheme is established for the calculation of the partition function of system with an arbitrary number of particles. The scheme is applied to finite number of bosons confined in isotropic and anisotropic parabolic traps and in rigid boxes. The specific heat as a function of temperature is studied in detail for different number of particles, different degrees of anisotropy, and different spatial dimensions. The cusp in the specific heat is taken as an indication of Bose-Einstein condensation (BEC).It is found that the results corresponding to a large number of particles are approached quite rapidly as the number of bosons in the system increases. For large number of particles, results obtained within our iterative scheme are consistent with those of the semiclassical theory of BEC in an external potential based on the grand canonical treatment.
Multiply-connected traps for cold, neutral atoms fix vortex cores of quantum gases. Laguerre-Gaussian laser modes are ideal for such traps due to their phase stability. We report theoretical calculations of the Bose-Einstein condensation transition properties and thermal characteristics of neutral atoms trapped in multiply connected geometries formed by Laguerre-Gaussian LG{p}{l} beams. Specifically, we consider atoms confined to the anti-node of a LG{0}{1} laser mode detuned to the red of an atomic resonance frequency, and those confined in the node of a blue-detuned LG{1}{1} beam. We compare the results of using the full potential to those approximating the potential minimum with a simple harmonic oscillator potential. We find that deviations between calculations of the full potential and the simple harmonic oscillator can be up to 3%-8% for trap parameters consistent with typical experiments.