We study the thermodynamic properties of spin systems with bond-disorder on small-world hypergraphs, obtained by superimposing a one-dimensional Ising chain onto a random Bethe graph with p-spin interactions. Using transfer-matrix techniques, we derive fixed-point equations describing the relevant order parameters and the free energy, both in the replica symmetric and one step replica symmetry breaking approximation. We determine the static and dynamic ferromagnetic transition and the spinglass transition within replica symmetry for all temperatures, and demonstrate corrections to these results when one step replica symmetry breaking is taken into account. The results obtained are in agreement with Monte-Carlo simulations.