Do you want to publish a course? Click here

Biased random walks on a Galton-Watson tree with leaves

255   0   0.0 ( 0 )
 Added by Alexander Fribergh
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

We consider a biased random walk $X_n$ on a Galton-Watson tree with leaves in the sub-ballistic regime. We prove that there exists an explicit constant $gamma= gamma(beta) in (0,1)$, depending on the bias $beta$, such that $X_n$ is of order $n^{gamma}$. Denoting $Delta_n$ the hitting time of level $n$, we prove that $Delta_n/n^{1/gamma}$ is tight. Moreover we show that $Delta_n/n^{1/gamma}$ does not converge in law (at least for large values of $beta$). We prove that along the sequences $n_{lambda}(k)=lfloor lambda beta^{gamma k}rfloor$, $Delta_n/n^{1/gamma}$ converges to certain infinitely divisible laws. Key tools for the proof are the classical Harris decomposition for Galton-Watson trees, a new variant of regeneration times and the careful analysis of triangular arrays of i.i.d. heavy-tailed random variables.



rate research

Read More

In [1] a detailed analysis was given of the large-time asymptotics of the total mass of the solution to the parabolic Anderson model on a supercritical Galton-Watson random tree with an i.i.d. random potential whose marginal distribution is double-exponential. Under the assumption that the degree distribution has bounded support, two terms in the asymptotic expansion were identified under the quenched law, i.e., conditional on the realisation of the random tree and the random potential. The second term contains a variational formula indicating that the solution concentrates on a subtree with minimal degree according to a computable profile. The present paper extends the analysis to degree distributions with unbounded support. We identify the weakest condition on the tail of the degree distribution under which the arguments in [1] can be pushed through. To do so we need to control the occurrence of large degrees uniformly in large subtrees of the Galton-Watson tree.
This note defines a notion of multiplicity for nodes in a rooted tree and presents an asymptotic calculation of the maximum multiplicity over all leaves in a Bienayme-Galton-Watson tree with critical offspring distribution $xi$, conditioned on the tree being of size $n$. In particular, we show that if $S_n$ is the maximum multiplicity in a conditional Bienayme-Galton-Watson tree, then $S_n = Omega(log n)$ asymptotically in probability and under the further assumption that ${bf E}{2^xi} < infty$, we have $S_n = O(log n)$ asymptotically in probability as well. Explicit formulas are given for the constants in both bounds. We conclude by discussing links with an alternate definition of multiplicity that arises in the root-estimation problem.
The key to our investigation is an improved (and in a sense sharp) understanding of the survival time of the contact process on star graphs. Using these results, we show that for the contact process on Galton-Watson trees, when the offspring distribution (i) is subexponential the critical value for local survival $lambda_2=0$ and (ii) when it is geometric($p$) we have $lambda_2 le C_p$, where the $C_p$ are much smaller than previous estimates. We also study the critical value $lambda_c(n)$ for prolonged persistence on graphs with $n$ vertices generated by the configuration model. In the case of power law and stretched exponential distributions where it is known $lambda_c(n) to 0$ we give estimates on the rate of convergence. Physicists tell us that $lambda_c(n) sim 1/Lambda(n)$ where $Lambda(n)$ is the maximum eigenvalue of the adjacency matrix. Our results show that this is not correct.
The aim of this paper is to study rumor processes in random environment. In a rumor process a signal starts from the stations of a fixed vertex (the root) and travels on a graph from vertex to vertex. We consider two rumor processes. In the firework process each station, when reached by the signal, transmits it up to a random distance. In the reverse firework process, on the other hand, stations do not send any signal but they listen for it up to a random distance. The first random environment that we consider is the deterministic 1-dimensional tree N with a random number of stations on each vertex; in this case the root is the origin of N. We give conditions for the survival/extinction on almost every realization of the sequence of stations. Later on, we study the processes on Galton-Watson trees with random number of stations on each vertex. We show that if the probability of survival is positive, then there is survival on almost every realization of the infinite tree such that there is at least one station at the root. We characterize the survival of the process in some cases and we give sufficient conditions for survival/extinction.
164 - Riti Bahl , Philip Barnet , 2019
At each site of a supercritical Galton-Watson tree place a parking spot which can accommodate one car. Initially, an independent and identically distributed number of cars arrive at each vertex. Cars proceed towards the root in discrete time and park in the first available spot they come to. Let $X$ be the total number of cars that arrive to the root. Goldschmidt and Przykucki proved that $X$ undergoes a phase transition from being finite to infinite almost surely as the mean number of cars arriving to each vertex increases. We show that $EX$ is finite at the critical threshold, describe its growth rate above criticality, and prove that it increases as the initial car arrival distribution becomes less concentrated. For the canonical case that either 0 or 2 cars arrive at each vertex of a $d$-ary tree, we give improved bounds on the critical threshold and show that $P(X = 0)$ is discontinuous.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا