Do you want to publish a course? Click here

Manifestations of Broken Symmetry: The Surface Phases of Ca(2-x)Sr(x)RuO4

145   0   0.0 ( 0 )
 Added by Robert Moore II
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The surface structural phases of Ca(2-x)Sr(x)RuO(4) are investigated using quantitative Low Energy Electron Diffraction. The broken symmetry at the surface enhances the structural instability against the RuO6 rotational distortion while diminishing the instability against the RuO6 tilt distortion occurring within the bulk crystal. As a result, suppressed structural and electronic surface phase transition temperatures are observed, including the appearance of an inherent Mott metal-to-insulator transition for x = 0.1 and possible modifications of the surface quantum critical point near xc ~ 0.5.



rate research

Read More

83 - J.Baier , P.Steffens , O.Schumann 2006
The magnetoelastic coupling in Ca$_{1.8}$Sr$_{0.2}$RuO$_4$ and in Ca$_{1.5}$Sr$_{0.5}$RuO$_4$ has been studied combining high-resolution dilatometer and diffraction techniques. Both compounds exhibit strong anomalies in the thermal-expansion coefficient at zero and at high magnetic field as well as an exceptionally large magnetostriction. All these structural effects, which are strongest in Ca$_{1.8}$Sr$_{0.2}$RuO$_4$, point to a redistribution of electrons between the different $t_{2g}$ orbitals tuned by temperature and magnetic field. The temperature and the field dependence of the thermal-expansion anomalies in Ca$_{1.8}$Sr$_{0.2}$RuO$_4$ yield evidence for a critical end-point lying close to the low-temperature metamagnetic transition; however, the expected scaling relations are not well fulfilled.
We report an electrical transport study in Ca$_{2-x}$Sr$_{x}$RuO$_4$ single crystals at high magnetic fields ($B$). For $x =0.2$, the Hall constant $R_{xy}$ decreases sharply at an anisotropic metamagnetic (MM) transition reaching its value for Sr$_2$RuO$_4$ at high fields. A sharp decrease in the $A$ coefficient of the resistivity $T^2$-term and a change in the structure of the angular magnetoresistance oscillations (AMRO) for $B$ rotating in the planes, confirms the reconstruction of the Fermi surface (FS). Our observations and LDA calculations indicate a strong dependence of the FS on the Ca concentration and suggest the coexistence of itinerant and localized electronic states in single layered ruthenates.
In search of a quantum phase transition between the two-dimensional ($2$D) ferromagnetism of CaCo$_{2-y}$As$_{2}$ and stripe-type antiferromagnetism in SrCo$_{2}$As$_{2}$, we rather find evidence for $1$D magnetic frustration between magnetic square Co layers. We present neutron diffraction data for Ca$_{1-x}$Sr$_{x}$Co$_{2-y}$As$_{2}$ that reveal a sequence of $x$-dependent magnetic transitions which involve different stacking of $2$D ferromagnetically-aligned layers with different magnetic anisotropy. We explain the $x$-dependent changes to the magnetic order by utilizing classical analytical calculations of a $1$D Heisenberg model where single-ion magnetic anisotropy and frustration of antiferromagnetic nearest- and next-nearest-layer exchange are all composition dependent.
250 - P. Steffens , O. Friedt , Y. Sidis 2010
By inelastic neutron scattering, we have analyzed the magnetic correlations in the paramagnetic metallic region of the series Ca(2-x)Sr(x)RuO(4), 0.2<=x<=0.62. We find different contributions that correspond to 2D ferromagnetic fluctuations and to fluctuations at incommensurate wave vectors (0.11,0,0), (0.26,0,0) and (0.3,0.3,0). These components constitute the measured response as function of the Sr-concentration x, of the magnetic field and of the temperature. A generic model is applicable to metallic Ca(2-x)Sr(x)RuO(4) close to the Mott transition, in spite of their strongly varying physical properties. The amplitude, characteristic energy and width of the incommensurate components vary only little as function of x, but the ferromagnetic component depends sensitively on concentration, temperature and magnetic field. While ferromagnetic fluctuations are very strong in Ca1.38Sr0.62RuO4 with a low characteristic energy of 0.2 meV at T=1.5 K, they are strongly suppressed in Ca1.8Sr0.2RuO4, but reappear upon the application of a magnetic field and form a magnon mode above the metamagnetic transition. The inelastic neutron scattering results document how the competition between ferromagnetic and incommensurate antiferromagnetic instabilities governs the physics of this system.
Inelastic neutron scattering is used to measure the temperature dependent phonon dispersion in Ca$_{2-x}$Sr$_{x}$RuO$_{4}$ ($x=0.4$, 0.6). The in-plane $Sigma_{4}$ octahedral tilt mode softens significantly at the zone boundary of the high temperature tetragonal (HTT) textit{I4}$_{mathit{1}}$textit{/acd} structure as the temperature approaches the transition to a low temperature orthorhombic (LTO) textit{Pbca} phase. This behavior is similar to that in La$_2$CuO$_4$, but a new inelastic feature that is not found in the cuprate is present. An anomalous phonon mode is observed at energy transfers greater than the $Sigma_{4}$ albeit with similar dispersion. This anomalous phonon mode never softens below $sim 5$ meV, even for temperatures below the HTT-LTO transition. This mode is attributed to the presence of intrinsic structural disorder within the textit{I4}$_{mathit{1}}$textit{/acd} tetragonal structure of the doped ruthenate.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا