The Balloon-borne Large Aperture Submillimeter Telescope: BLAST


Abstract in English

The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is a sub-orbital surveying experiment designed to study the evolutionary history and processes of star formation in local galaxies (including the Milky Way) and galaxies at cosmological distances. The BLAST continuum camera, which consists of 270 detectors distributed between 3 arrays, observes simultaneously in broad-band (30%) spectral-windows at 250, 350, and 500 microns. The optical design is based on a 2m diameter telescope, providing a diffraction-limited resolution of 30 at 250 microns. The gondola pointing system enables raster mapping of arbitrary geometry, with a repeatable positional accuracy of ~30; post-flight pointing reconstruction to ~5 rms is achieved. The on-board telescope control software permits autonomous execution of a pre-selected set of maps, with the option of manual override. In this paper we describe the primary characteristics and measured in-flight performance of BLAST. BLAST performed a test-flight in 2003 and has since made two scientifically productive long-duration balloon flights: a 100-hour flight from ESRANGE (Kiruna), Sweden to Victoria Island, northern Canada in June 2005; and a 250-hour, circumpolar-flight from McMurdo Station, Antarctica, in December 2006.

Download