Pb(Zr0.52Ti0.48)O3 (PZT) thin films were in situ deposited by pulsed laser deposition (PLD) on Pt/Ti/SiO2/Si substrates using a template layer derived by sol-gel method. A 0.1-$mu$m-thick PZT layer with (111) or (100)-preferred orientation was first deposited onto Pt/Ti/SiO2/Si substrates using the sol-gel method, and than a PZT layer with thickness of 1$mu$m was in situ deposited by PLD on the above-mentioned PZT layer. The crystalline phases and the preferred orientations of the PZT films were investigated by X-ray diffraction analysis. Surface and cross-sectional morphologies were observed by scanning electron microscopy and transmission electron microscopy. The electrical properties of the films were evaluated by measuring their P-E hysteresis loops and dielectric constants. The preferred orientation of the films can be controlled using the template layer derived by the sol-gel method. The deposition temperature required to obtain the perovskite phase in this process is approximately 460 degrees C, and is significantly lower than that in the case of direct film deposition by PLD on the Pt/Ti/SiO2/Si substrates. Keywords: lead zirconate titanate (PZT), thin film, sol-gel method, laser ablation, electrical properties