No Arabic abstract
A compact correlation-function expansion is developed for nth order optical susceptibilities in the frequency domain using the Keldysh-Schwinger loop. By not keeping track of the relative time ordering of bra and ket interactions at the two branches of the loop, the resulting expressions contain only n+1 basic terms, compared to the 2n terms required for a fully time-ordered density matrix description. Superoperator Greens function expressions for the nth order suscpeptibility derived using both expansions reflect different types of interferences between pathways .These are demonstrated for correlation-induced resonances in four wave mixing signals.
We initiate the study of open quantum field theories using holographic methods. Specifically, we consider a quantum field theory (the system) coupled to a holographic field theory at finite temperature (the environment). We investigate the effects of integrating out the holographic environment with an aim of obtaining an effective dynamics for the resulting open quantum field theory. The influence functionals which enter this open effective action are determined by the real-time (Schwinger-Keldysh) correlation functions of the holographic thermal environment. To evaluate the latter, we exploit recent developments, wherein the semiclassical gravitational Schwinger-Keldysh saddle geometries were identified as complexified black hole spacetimes. We compute real-time correlation functions using holographic methods in these geometries, and argue that they lead to a sensible open effective quantum dynamics for the system in question, a question that hitherto had been left unanswered. In addition to shedding light on open quantum systems coupled to strongly correlated thermal environments, our results also provide a principled computation of Schwinger-Keldysh observables in gravity and holography. In particular, these influence functionals we compute capture both the dissipative physics of black hole quasinormal modes, as well as that of the fluctuations encoded in outgoing Hawking quanta, and interactions between them. We obtain results for these observables at leading order in a low frequency and momentum expansion in general dimensions, in addition to determining explicit results for two dimensional holographic CFT environments.
The time evolution of an extended quantum system can be theoretically described in terms of the Schwinger-Keldysh functional integral formalism, whose action conveniently encodes the information about the dynamics. We show here that the action of quantum systems evolving in thermal equilibrium is invariant under a symmetry transformation which distinguishes them from generic open systems. A unitary or dissipative dynamics having this symmetry naturally leads to the emergence of a Gibbs thermal stationary state. Moreover, the fluctuation-dissipation relations characterizing the linear response of an equilibrium system to external perturbations can be derived as the Ward-Takahashi identities associated with this symmetry. Accordingly, the latter provides an efficient check for the onset of thermodynamic equilibrium and it makes testing the validity of fluctuation-dissipation relations unnecessary. In the classical limit, this symmetry renders the one which is known to characterize equilibrium in the stochastic dynamics of classical systems coupled to thermal baths, described by Langevin equations.
I review the generating function for quantum-statistical mechanics, known as the Feynman-Vernon influence functional, the decoherence functional, or the Schwinger-Keldysh path integral. I describe a probability-conserving $ivarepsilon$ prescription from a path-integral implementation of Lindblad evolution. I also explain how to generalize the formalism to accommodate out-of-time-ordered correlators (OTOCs), leading to a Larkin-Ovchinnikov path integral. My goal is to provide step-by-step calculations of path integrals associated to the harmonic oscillator.
We study numerically the integrable turbulence developing from strongly nonlinear partially coherent waves, in the framework of the focusing one-dimensional nonlinear Schrodinger equation. We find that shortly after the beginning of motion the turbulence enters a state characterized by a very slow evolution of statistics (the quasi-stationary state - QSS), and we concentrate on the detailed examination of the basic statistical functions in this state depending on the shape and the width of the initial spectrum. In particular, we show that the probability density function (PDF) of wavefield intensity is nearly independent of the initial spectrum and is very well approximated by a certain Bessel function representing an integral of the product of two exponential distributions. The PDF corresponds to the value of the second-order moment of intensity equal to 4, indicating enhanced generation of rogue waves. All waves of large amplitude that we have studied are very well approximated - both in space and in time - by the rational breather solutions of either the first (the Peregrine breather), or the second orders.
Finding the ground states of the Ising Hamiltonian [1] maps to various combinatorial optimization problems in biology, medicine, wireless communications, artificial intelligence, and social network. So far no efficient classical and quantum algorithm is known for these problems, and intensive research is focused on creating physical systems - Ising machines - capable of finding the absolute or approximate ground states of the Ising Hamiltonian [2-6]. Here we report a novel Ising machine using a network of degenerate optical parametric oscillators (OPOs). Spins are represented with above-threshold binary phases of the OPOs and the Ising couplings are realized by mutual injections [7]. The network is implemented in a single OPO ring cavity with multiple trains of femtosecond pulses and configurable mutual couplings, and operates at room temperature. We programed the smallest non-deterministic polynomial time (NP)- hard Ising problem on the machine, and in 1000 runs of the machine no computational error was detected.