Do you want to publish a course? Click here

On the dimension of the sheets of a reductive Lie algebra

130   0   0.0 ( 0 )
 Added by Anne Moreau
 Publication date 2013
  fields
and research's language is English
 Authors Anne Moreau




Ask ChatGPT about the research

This note is a corrigendum to the previous version arXiv:0711.2735v3 published in J. Lie Theory. As it has been recently pointed out to me by Alexander Premet, Remark 3 of arXiv:0711.2735v3 is incorrect. We verify in this note thanks to recent results of Premet and Topley (see arXiv:1301.4653) that Theorem 25 of arXiv:0711.2735v3 remains correct in spite of this error.



rate research

Read More

The commuting variety of a reductive Lie algebra ${goth g}$ is the underlying variety of a well defined subscheme of $gg g{}$. In this note, it is proved that this scheme is normal. In particular, its ideal of definition is a prime ideal.
The generalized commuting and isospectral commuting varieties of a reductive Lie algebra have been introduced in a preceding article. In this note, it is proved that their normalizations are Gorenstein with rational singularities. Moreover, their canonical modules are free of rank 1. In particular, the usual commuting variety is Gorenstein with rational singularities and its canonical module is free of rank 1.
For a reductive Lie algbera over an algbraically closed field of charasteristic zero,we consider a borel subgroup $B$ of its adjoint group, a Cartan subalgebra contained inthe Lie algebra of $B$ and the closure $X$ of its orbit under $B$ in the Grassmannian.The variety $X$ plays an important role in the study of the commuting variety. In thisnote, we prove that $X$ is Gorenstein with rational singularities.
The nilpotent bicone of a finite dimensional complex reductive Lie algebra g is the subset of elements in g x g whose subspace generated by the components is contained in the nilpotent cone of g. The main result of this note is that the nilpotent bicone is a complete intersection. This affirmatively answers a conjecture of Kraft-Wallach concerning the nullcone. In addition, we introduce and study the characteristic submodule of g. The properties of the nilpotent bicone and the characteristic submodule are known to be very important for the understanding of the commuting variety and its ideal of definition. In order to study the nilpotent bicone, we introduce another subvariety, the principal bicone. The nilpotent bicone, as well as the principal bicone, are linked to jet schemes. We study their dimensions using arguments from motivic integration. Namely, we follow methods developed in http://arxiv.org/abs/math/0008002v5 .
Let $L$ be a Lie algebra of Block type over $C$ with basis ${L_{alpha,i},|,alpha,iinZ}$ and brackets $[L_{alpha,i},L_{beta,j}]=(beta(i+1)-alpha(j+1))L_{alpha+beta,i+j}$. In this paper, we shall construct a formal distribution Lie algebra of $L$. Then we decide its conformal algebra $B$ with $C[partial]$-basis ${L_alpha(w),|,alphainZ}$ and $lambda$-brackets $[L_alpha(w)_lambda L_beta(w)]=(alphapartial+(alpha+beta)lambda)L_{alpha+beta}(w)$. Finally, we give a classification of free intermediate series $B$-modules.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا