Do you want to publish a course? Click here

Leading two-loop Yukawa corrections to the pole masses of SUSY fermions in the MSSM

240   0   0.0 ( 0 )
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We have calculated the leading Yukawa corrections to the chargino, neutralino and gluino pole masses in the DR-bar scheme in the Minimal Supersymmetric Standard Model (MSSM) with the full set of complex parameters. We have performed a numerical analysis for a particular point in the parameter space and found typical corrections of a few tenths of a percent thus exceeding the experimental resolution as expected at the ILC. We provide a computer program which calculates two-loop pole masses for SUSY fermions with complex parameters up to the respective order in pertubation theory.



rate research

Read More

172 - R. Schofbeck , H. Eberl 2007
We have calculated the two-loop strong interaction corrections to the chargino pole masses in the DRbar-scheme in the Minimal Supersymmetric Standard Model (MSSM) with complex parameters. We have performed a detailed numerical analysis for a particular point in the parameter space and found corrections of a few tenths of a percent. We provide a computer program which calculates chargino and neutralino masses with complex parameters including the one-loop corrections and all two-loop SQCD effects.
100 - R. Schofbeck , H. Eberl 2006
We have calculated the two-loop strong interaction corrections to the neutralino pole masses in the DRbar-scheme in the Minimal Supersymmetric Standard Model (MSSM). We have performed a detailed numerical analysis for a particular point in the parameter space and found corrections of a few tenths of a percent. We agree with previously derived analytic formulae for two-loop corrections to fermion masses.
We compute the two-loop O(as*at) corrections to the Higgs boson masses in supersymmetric extensions of the Standard Model with Dirac gaugino masses. We rely on the effective-potential technique, allow for both Dirac and Majorana mass terms for the gluinos, and compute the corrections in both the DRbar and on-shell renormalisation schemes. We give detailed results for the MDGSSM and the MRSSM, and simple approximate formulae valid in the decoupling limit for all currently-studied variants of supersymmetric models with Dirac gluinos. These results represent the first explicit two-loop calculation of Higgs boson masses in supersymmetric models beyond the MSSM and the NMSSM.
We compute the two-loop QCD corrections to the neutral Higgs-boson masses in the MSSM, including the effect of non-vanishing external momenta in the self-energies. We obtain corrections of O(alpha_t*alpha_s) and O(alpha*alpha_s), i.e., all two-loop corrections that involve the strong gauge coupling when the only non-vanishing Yukawa coupling is the top one. We adopt either the DRbar renormalization scheme or a mixed OS-DRbar scheme where the top/stop parameters are renormalized on-shell. We compare our results with those of earlier calculations, pointing out an inconsistency in a recent result obtained in the mixed OS-DRbar scheme. The numerical impact of the new corrections on the prediction for the lightest-scalar mass is moderate, but already comparable to the accuracy of the Higgs-mass measurement at the LHC.
Results are presented for the momentum dependent two-loop contributions of O(alpha_t alpha_s) to the masses and mixing effects in the Higgs sector of the MSSM. They are obtained in the Feynman-diagrammatic approach using a mixed on-shell/DRbar renormalization that can directly be matched onto the higher-order corrections included in the code FeynHiggs. The new two-loop diagrams are evaluated with the program SecDec. The combination of the new momentum dependent two-loop contribution with the existing one- and two-loop corrections in the on-shell/DRbar scheme leads to an improved prediction of the light MSSM Higgs boson mass and a correspondingly reduced theoretical uncertainty. We find that the corresponding shifts in the lightest Higgs-boson mass M_h are below 1 GeV in all scenarios considered, but can extend up to the level of the current experimental uncertainty. The results are included in the code FeynHiggs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا