Do you want to publish a course? Click here

Comparing the observational instability regions for pulsating pre-main sequence and classical $delta$ Scuti stars

188   0   0.0 ( 0 )
 Added by Konstanze Zwintz
 Publication date 2007
  fields Physics
and research's language is English
 Authors K. Zwintz




Ask ChatGPT about the research

A comparison of the hot and cool boundaries of the classical instability strip with observations has been an important test for stellar structure and evolution models of post- and main sequence stars. Over the last few years, the number of pulsating pre-main sequence (PMS) stars has increased significantly: 36 PMS pulsators and candidates are known as of June 2007. This number allows to investigate the location of the empirical PMS instability region and to compare its boundaries to those of the classical (post- and main sequence) instability strip. Due to the structural differences of PMS and (post-)main sequence stars, the frequency spacings for nonradial modes will be measurably different, thus challenging asteroseismology as a diagnostic tool.



rate research

Read More

Stellar components in binaries are subject to tidal forces which influence asteroseismic properties. Tidally pertubed pulsations have been reported for different objects but none of these are in their pre-main sequence phase of evolution. This makes RS Cha, consisting of two $delta$ Scuti stars and with pulsational characteristics influenced by tidal effects , the first such object observed. We aim to investigate the pulsational properties of the eclipsing binary RS Cha in terms of the theory of tidally perturbed pulsations. Based on photometric time series obtained from the TESS satellite, we performed binary modelling using PHOEBE to interpret the binary light curve and to allow the investigation of the pulsations of both components in RS Cha. We modelled the detrended light curve with the superposition of linear modes. The frequencies were then interpreted as self excited modes perturbed by tidal forces. We find evidence for tidally perturbed modes, which enables the identification of pulsation modes. RS Cha mainly exhibits dipole modes, while one prominent $l=2$ or $l=3$ mode is also inferred. The latter verifies previous results from spectroscopic time series. This work shows that RS Cha is an ideal candidate to test the theory of tidally perturbed pulsations within the framework of asteroseismic modelling. The identification of multiple pulsation modes using this theory is unprecedented and will be a keystone in the future of pre-main sequence asteroseismology. However, amplitude modulation caused by the changing light ratio during the orbital phase in an eclipsing binary also plays a significant role, which can complicate mode identification.
We present the results of a photometric multisite campaign on the $delta$ Scuti Pre-Main-Sequence star IP Per. Nine telescopes have been involved in the observations, with a total of about 190 hours of observations over 38 nights. Present data confirms the multiperiodic nature of this star and leads to the identification of at least nine pulsational frequencies. Comparison with the predictions of linear non-adiabatic radial pulsation models allowed us to identify only five of the nine observed frequencies, and to constrain the position of IP Per in the HR diagram. The latter is in good agreement with the empirical determination of the stellar parameters obtained by Miroshnichenko et al. (2001). An initial interpretation of the observed frequencies using the Aarhus non-radial pulsation code suggests that three frequencies could be associated with non-radial ($l$=2) modes. Finally, we present new evolutionary and pulsation models at lower metallicity (Z=0.008) to take into account the possibility that IP Per is metal deficient, as indicated by Miroshnichenko et al. (2001).
As part of the NASA Kepler Guest Observer program, we requested and obtained long-cadence data on about 2700 faint (magnitude 14-16) Kepler stars with effective temperatures and surface gravities that lie near or within the pulsation instability region for main-sequence gamma Doradus and delta Scuti pulsating variables. These variables are of spectral type A-F with masses of 1.4 to 2.5 solar masses. The delta Scuti stars pulsate in radial and non-radial acoustic modes, with periods of a few hours (frequencies around 10 cycles/day), while gamma Doradus variables pulsate in nonradial gravity modes with periods 0.3 to 3 days (frequencies around 1 cycle/day). Here we consider the light curves and Fourier transforms of 633 stars in an unbiased sample observed by Kepler in Quarters 6-13 (June 2010-June 2012). We show the location of these stars in the log surface gravity--effective temperature diagram compared to the instability region limits established from ground-based observations, and taking into account uncertainties and biases in the Kepler Input Catalog T_eff values. While hundreds of variables have been discovered in the Kepler data, about 60% of the stars in our sample do not show any frequencies between 0.2 and 24.4 cycles per day with amplitude above 20 parts per million. We find that six of these apparently constant stars lie within the pulsation instability region. We discuss some possible reasons that these stars do not show photometric variability in the Kepler data. We also comment on the non-constant stars, and on 26 variable-star candidates, many of which also do not lie within the expected instability regions.
We investigate the nature of the innermost regions of seven circumstellar disks around pre-main-sequence stars. Our object sample contains disks apparently at various stages of their evolution. Both single stars and spatially resolved binaries are considered. In particular, we search for inner disk gaps as proposed for several young stellar objects. When analyzing the underlying dust population in the atmosphere of circumstellar disks, the shape of the 10um feature is investigated. We performed interferometric observations in N band 8-13um with MIDI using baseline lengths of between 54m and 127m. The data analysis is based on radiative-transfer simulations using the Monte Carlo code MC3D by modeling simultaneously the SED, N band spectra, and interferometric visibilities. Correlated and uncorrelated N band spectra are compared to investigate the radial distribution of the dust composition of the disk atmosphere. Spatially resolved mid-infrared emission was detected in all objects. For four objects, the observed N band visibilities and corresponding SEDs could be simultaneously simulated using a parameterized active disk-model. For the more evolved objects of our sample, a purely passive disk-model provides the closest fit. The visibilities inferred for one source allow the presence of an inner disk gap. For another object, one of two visibility measurements could not be simulated by our modeling approach. All uncorrelated spectra reveal the 10um silicate emission feature. In contrast to this, some correlated spectra of the observations of the more evolved objects do not show this feature, indicating a lack of small silicates in the inner versus the outer regions of these disks. We conclude from this observational result that more evolved dust grains can be found in the more central disk regions.
We present light curves and periodograms for 27 stars in the young Upper Scorpius association (age=$11 pm 1$,Myr) obtained with the Kepler spacecraft. This association is only the second stellar grouping to host several pulsating pre-main sequence (PMS) stars which have been observed from space. From an analysis of the periodograms, we identify six $delta$~Scuti variables and one $gamma$~Doradus star. These are most likely PMS stars or else very close to the zero-age main sequence. Four of the $delta$~Scuti variables were observed in short-cadence mode, which allows us to resolve the entire frequency spectrum. For these four stars, we are able to infer some qualitative information concerning their ages. For the remaining two $delta$~Scuti stars, only long-cadence data are available, which means that some of the frequencies are likely to be aliases. One of the stars appears to be a rotational variable in a hierarchical triple system. This is a particularly important object, as it allows the possibility of an accurate mass determination when radial velocity observations become available. We also report on new high-resolution echelle spectra obtained for some of the stars of our sample.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا